Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).
Answer:
The mass of a single paper is approximately 0.047 lb/paper which in SI Units is approximately 21.77 g/paper
Explanation:
The given information on the size and the weight of paper are;
The mass of a box of 500 sheets of paper = 24 lb
The number of sheets in the paper = 500 sheets
The dimensions of the paper = 17 in. × 22 in., which is equivalent to 43.18 cm × 55.88 cm
The mass of a single paper = The mass of the box of paper/(The number of sheets of paper present in the box)
The mass of a single paper = 24 lb/500 = 0.047 lb/paper
Given that 1 lb = 453.6 g, we have;
0.047 lb/paper = 0.047 lb/paper×453.6 g/(lb) = 21.77 g/paper
The mass of a single paper = 0.047 lb/paper = 21.77 g/paper.
Answer:2.5 m/s
37.5KJ
Explanation:
Let
be the initial velocity of rail road car ,coupled cars & Final velocity of system respectively.

Conserving momentum



Therefore Final velocity of system is 2.5m/s
(b)Mechanical Energy lost =Initial Kinetic Energy -Final Kinetic Energy



A compound
Explanation:
A compound machine is the combination of two or more simple machines.
An example is bicycle.
- A simple machine is a device that is used to increase the magnitude of force.
- It is a basic mechanical unit.
- Examples are inclined planes, lever systems, wheel and axle.
- A compound machine is a combination of these simple machines.
learn more:
lever brainly.com/question/5352966
#learnwithBrainly
Answer:
10 m/s
Explanation:
The problem can be solved by using the law of conservation of momentum: the initial momentum has to be equal to the final momentum, so we can write the following


where
is the mass of the first car
is the initial velocity of the first car
is the mass of the second car
is the initial velocity of the second car
is the final velocity of the two combined cars after the collision
Re-arranging the equation and substituting the numbers, we find
