Work = force × distance
= 35 N × 200 m
= 7000 J
Answer:
The change in length per unit length per degree rise in temperature of copper is 0.000017k
Explanation:
Given that :
The linear expansivity of copper is 0.000017k. This simply means that ; for a given copper length, the length of such copper will increase by 0.000017k for every degree rose in temperature of the copper rod.
Therefore, the change in length per unit length per degree rise in temperature (k) is 0.000017
The energy of moving electrical charges is Electrical energy
Hope its the answer you are finding and hope it helps....
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


<h3><u>Answer</u> :</h3>
◈ As per newton's second law of motion, Force is defined as the product of mass and acceleration
Mathematically,

Unit of mass : kg
Unit of acceleration : m/s²
Therefore,
Unit of force ➠ <u>kg m/s²</u>
SI unit : <u>N (newton)</u> or <u>kg m/s²</u>