A glass pipe system has a very corrosive liquid flowing in it (think hydrofluoric acid, say). The liquid will destroy flow meters, but you need to know the flow rate. One way of measuring the flow rate is to add a fluorescent dye to the liquid at a known concentration, and then downstream activate the dye by UV light and then measure the dye concentration by emitted light. If the dye is added at 1.00 g/s, and the dye concentration downstream is 0.050% by mass, what is the unknown flow rate in kg/h
glass
Answer:
1/8
Explanation:
17,100 years is 3 times the half-life of 5,700 years. After each half-life, half remains, so the amount remaining after 3 half-lives is ...
(1/2)(1/2)(1/2) = 1/8
1/8 of the sample remains after 17,100 years.
Given parameters:
Mass on earth = 50kg
Unknown:
Mass on planet Xenon = ?
Weight on planet Xenon = ?
Mass is the amount of matter contained in a particular substance.
Weight is the force on a body and it is derived from the product of mass and acceleration due to gravity.
Weight = mass x acceleration due to gravity
Planet Xenon has half the gravitational force of Earth.
This translated gives
= 4.9m/s²
Now, mass is always the same every where if the amount of matter in a substance does not change.
In this problem, mass = 50kg on planet xenon.
Weight = mass x acceleration due to gravity = 50 x 4.9 = 245N
The weight on Xenon is 245N and the mass is 50kg
Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>
Overload <<<<<<<<<<<<<<<<<<<<<<<<<<<<<,,,,,,,,