Answer:
Mechanical advantage = 2.875
Explanation:
Given:
A diagram is shown below for the above scenario.
Length of ramp (Effort arm) = 4.6 m
Height of truck bed ( Resistance length) = 1.6 m
Mechanical advantage (MA) is the ratio of effort arm and resistance length.
So, mechanical advantage is given as,

Answer:
(a) 1.414 km
(b) 1.06 m/s
Explanation:
(a) For John:
Distance = 1 km north and then 1 km east
Speed = 1.5 m/s
total distance traveled = 1 + 1 = 2 km = 2000 m
Time taken to travel = Distance / speed
t = 2000 / 1.5 = 1333.3 seconds
Displacement =
(b) For jane :
Time is same as john = 1333.33 second
Distance = 1.414 km = 1414 m
Speed = distance / time = 1414 / 1333.33 = 1.06 m/s
Answer:

Explanation:
Given the following data;
Frequency = 4.0 x 10⁹ Hz
Planck's constant, h = 6.626 x 10-34 J·s.
To find the energy of the electromagnetic wave;
Mathematically, the energy of an electromagnetic wave is given by the formula;
E = hf
Where;
E is the energy possessed by a wave.
h represents Planck's constant.
f is the frequency of a wave.
Substituting the values into the formula, we have;


Answer:
0.021 V
Explanation:
The average induced emf (E) can be calculated usgin the Faraday's Law:
<u>Where:</u>
<em>N = is the number of turns = 1 </em>
<em>ΔΦ = ΔB*A </em>
<em>Δt = is the time = 0.3 s </em>
<em>A = is the loop of wire area = πr² = πd²/4 </em>
<em>ΔB: is the magnetic field = (0 - 1.04) T </em>
Hence the average induced emf is:
Therefore, the average induced emf is 0.021 V.
I hope it helps you!
Answer:
Explanation:
Given
Distance = 4.0m
Time = 5.0 mins = 300secs
Required
Average speed
Average speed = Distance/Time
Average speed = 4.0/300
Average speed = 0.01333m/secs
Hence the average speed of the snail is 0.01333m/s