1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudik [331]
2 years ago
11

How can we show magnetic field lines?

Physics
2 answers:
aleksklad [387]2 years ago
8 0

<em>Magnetic fields can be mapped out using small plotting compasses : place the plotting compass near the magnet on a piece of paper. move the plotting compass to many different positions in the magnetic field, marking the needle direction each time. join the points to show the field lines.</em>

lara [203]2 years ago
7 0

Answer:

Magnetic field lines are defined to have the direction that a small compass points when placed at a location. (a) If small compasses are used to map the magnetic field around a bar magnet, they will point in the directions shown: away from the north pole of the magnet, toward the south pole of the magnet.

Explanation:

have a beautiful day ahead

You might be interested in
A mover loads a crate onto a truck bed 1.6m from the street using a ramp that is 4.6m long. What is a mechanical advantage?
Ne4ueva [31]

Answer:

Mechanical advantage = 2.875

Explanation:

Given:

A diagram is shown below for the above scenario.

Length of ramp (Effort arm) = 4.6 m

Height of truck bed ( Resistance length) = 1.6 m

Mechanical advantage (MA) is the ratio of effort arm and resistance length.

So, mechanical advantage is given as,

MA=\frac{\textrm{Effort arm}}{\textrm{Resistance length}}= \frac{4.6}{1.6}=2.875

6 0
3 years ago
John walks 1.00 km north, then turns right and walks 1.00 km east. His speed is 1.50 m/s during the entire stroll.a) What is the
avanturin [10]

Answer:

(a) 1.414 km

(b) 1.06 m/s

Explanation:

(a) For John:

Distance = 1 km north and then 1 km east

Speed = 1.5 m/s

total distance traveled = 1 + 1 = 2 km = 2000 m

Time taken to travel = Distance / speed

t = 2000 / 1.5 = 1333.3 seconds

Displacement = \sqrt{1^{2}+1^{2}}=1.414 km

(b) For jane :

Time is same as john = 1333.33 second

Distance = 1.414 km = 1414 m

Speed = distance / time = 1414 / 1333.33 = 1.06 m/s

3 0
3 years ago
What is the energy of an electromagnetic wave that has a frequency of
sukhopar [10]

Answer:

Energy, \; E = 2.6504 * 10^{-34} \; Joules

Explanation:

Given the following data;

Frequency = 4.0 x 10⁹ Hz

Planck's constant, h = 6.626 x 10-34 J·s.

To find the energy of the electromagnetic wave;

Mathematically, the energy of an electromagnetic wave is given by the formula;

E = hf

Where;

E is the energy possessed by a wave.

h represents Planck's constant.

f is the frequency of a wave.

Substituting the values into the formula, we have;

Energy, \; E = 4.0 x 10^{9} * 6.626 x 10^{-34}

Energy, \; E = 2.6504 * 10^{-34} \; Joules

8 0
3 years ago
A 8.8 cm diameter circular loop of wire is in a 1.04 T magnetic field. The loop is removed from the field in 0.30 s . Assume tha
denis23 [38]

Answer:

0.021 V

Explanation:

The average induced emf (E) can be calculated usgin the Faraday's Law:

E = - \frac{N*\Delta \phi}{\Delta t}  

<u>Where:</u>

<em>N = is the number of turns = 1   </em>

<em>ΔΦ = ΔB*A                                            </em>

<em>Δt = is the time = 0.3 s   </em>

<em>A = is the loop of wire area = πr² = πd²/4 </em>

<em>ΔB: is the magnetic field = (0 - 1.04) T                     </em>

Hence the average induced emf is:

E = - \frac{\Delta B*A}{\Delta t} = - \frac{(0- 1.04 T) \pi (0.088 m)^{2}}{4*0.3 s} = 0.021 V                      

Therefore, the average induced emf is 0.021 V.

I hope it helps you!

8 0
3 years ago
At its maximum speed, a typical snail moves about 4.0 m in 5.0 min.
stiv31 [10]

Answer:

Explanation:

Given

Distance = 4.0m

Time = 5.0 mins = 300secs

Required

Average speed

Average speed = Distance/Time

Average speed = 4.0/300

Average speed = 0.01333m/secs

Hence the average speed of the snail is 0.01333m/s

6 0
3 years ago
Other questions:
  • A satellite is in a circular orbit 8200 km above the Earth’s surface; i.e., it moves on a circular path under the influence of n
    15·1 answer
  • A proton moves at constant velocity in the direction, through a region in which there is an electric field and a magnetic field.
    10·1 answer
  • A car traveling at 27 m/s slams on its brakes to come to a stop. It decelerates at a rate of 8 m/s2 . What is the stopping dista
    9·1 answer
  • Which sequence shows the different types of electromagnetic waves arranged in an increasing order of their frequency?
    9·1 answer
  • A 0.50 kilogram ball is held at a height of 20 meters. What is the kinetic energy of the ball when it reaches halfway after bein
    7·1 answer
  • What type of energy depends upon an object mass and the object speed?
    8·1 answer
  • if the forces are moving in the same direction, ____ the forces. Please help i’m actually so confused!
    7·1 answer
  • 3) A lead bullet initially at 30 C just melts upon striking a target. Assuming that all of the initial kinetic energy of the bul
    8·1 answer
  • An electron is pushed into an electric field where it acquires a 1-V electrical potential. Suppose instead that two electrons ar
    12·1 answer
  • A 1200 kg car traveling at 20.83 m/s comes to a screeching halt in a time of 6.00 seconds. Calculate the force of friction exper
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!