Answer:

Explanation:
From the question we are told that:
Length 
Mass 
Angular Velocity 
Generally the equation for Kinetic energy K.E is mathematically given by

This question involves the concepts of the equations of motion, kinetic energy, and potential energy.
a. The kinetic energy of the rocket at launch is "3.6 J".
b. maximum gravitational potential energy of the rocket is "3.6 J".
<h3>a. KINETIC ENERGY AT LAUNCH</h3>
The kinetic energy of the rocket at launch is given by the following formula:

where,
- K.E = initial kinetic energy = ?
- m = mass of rocket = 0.05 kg
= initial speed = 12 m/s
Therefore,

K.E = 3.6 J
<h3>
b. MAXIMUM GRAVITATIONAL POTENTIAL ENERGY</h3>
First, we will use the third equation of motion to find the maximum height reached by rocket:

where,
- g = -9.81 m/s²
- h = maximum height = ?
- vf = final speed = 0 m/s
Therefore,
2(-9.81 m/s²)h = (0 m/s)² - (12 m/s)²
h = 7.34 m
Hence, the maximum gravitational potential energy will be:
P.E = mgh
P.E = (0.05 kg)(9.81 m/s²)(7.34 m)
P.E = 3.6 J
Learn more about the equations of motion here:
brainly.com/question/5955789
An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Answer: The elevator must be accelerating.
Explanation:
As the tension force is opposing to the the force of gravity on the load which is hung vertically, and the tension force can adopt any value in order to comply with Newton's 2nd law, if the tension force is less than the force due to gravity, this means that all system is not in equilibrium, so it must be accelerating.
If we assume that the downward is the positive direction, we can write:
mg - T = ma
If T = 0.9 mg, ⇒ mg (1-0.9) =0.1 mg = m a ⇒a = 0.1 g , in downward direction.
I think it is the first law of motion.