Answer:
The distance from the top of the stick would be 2l/3
Explanation:
Let the impulse 'FΔt' acts as a distance 'x' from the hinge 'H'. Assume no impulsive reaction is generated at 'H'. Let the angular velocity of the rod about 'H' just after the applied impulse be 'W'. Also consider that the center of percussion is the point on a bean attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot.
Applying impulse momentum theorem for linear momentum.
FΔt = m(Wl/2), since velocity of center of mass of rod = Wl/2
Similarly applying impulse momentum theorem per angular momentum about H
FΔt * x = I * W
Where FΔt * x represents the impulsive torque and I is the moment of inertia
F Δt.x = (ml² . W)/3
Substituting FΔt
M(Wl/2) * x = (ml². W)/3
1/x = 3/2l
x = 2l/3
Answer:
Double helix
Explanation:
The Double helix is a DNA molecule. The two strands around the Double Helix is called the twisted ladder.
There both minerals and there both
Explanation:
In a chemical reaction, when mass is conserved , the number of atoms or moles of the reactants must be equal to the number of moles or atoms in the products side.
From the diagram, we should carefully look to see if the number of atoms that makes up the reactants are equal to those on the product side.
For example:
A + B → AB
Here, mass is conserved because, on the reactant side, we have 1 atom of A and on the product side we have 1 atom of A
For B, on the reactant side, we have 1 atom of B and on the product side, we have 1 atom of B.