Answer:
how are we supposed to help?
Answer:
6.5 × 10¹⁵/ cm³
Explanation:
Thinking process:
The relation 
With the expression Ef - Ei = 0.36 × 1.6 × 10⁻¹⁹
and ni = 1.5 × 10¹⁰
Temperature, T = 300 K
K = 1.38 × 10⁻²³
This generates N₀ = 1.654 × 10¹⁶ per cube
Now, there are 10¹⁶ per cubic centimeter
Hence, 
Answer:

Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ =
= 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than
and greater than
at 125 KPa. Therefore, the steam is in a saturated mixture state. So:

Now, we will find
(enthalpy at the outlet for the isentropic process):

Now, the isentropic efficiency of the turbine can be given as follows:

Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.
<u>Given the following data:</u>
- Jam density = 122 veh/km.
<h3>How to calculate the
maximum flow.</h3>
According to Greenshield Model, maximum flow is given by this formula:

<u>Where:</u>
is the free flow speed.
is the Jam density.
In order to calculate the free flow speed, we would use this formula:

Substituting the parameters into the model, we have:

Max flow = 3,599 veh/hr.
Read more on traffic flow here: brainly.com/question/15236911
Answer: Rupture strength
Explanation: Rupture strength is the strength of a material that is bearable till the point before the breakage by the tensile strength applied on it. This term is mentioned when there is a sort of deformation in the material due to tension.So, rupture will occur before whenever there are chances of failing and the material is still able to bear stresses before failing.