Answer:
Because the domain refers to the set of possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set of possible output values, which are shown on the y-axis.
Step-by-step explanation:
Answer:
x > 6
Step-by-step explanation:
1.) Distribute - 3 through the parenthesis
7x-3(4x-8)<6x+12-9x
7x-12x+24<6x+12-9x
2.) Then collect like terms
7x-12x+24<6x+12-9x
7x-12x+24<-3x+12
7x-12x+24<-3x+12
-5x+24<-3x+12
3.) Move the <u>variable</u> to the left and change the sign
-5x+24<-3x+12
-5x+3x+24<12
4.) Move the <u>constant</u> to the right and change it's sign
-5x+3x+24<12
-5x+3x<12-24
5.) Collect like terms
-5x+3x<12-24
-2x<12-24
6.) Calculate the difference
-2x<-12
7.) Divide both sides by -2 and flip the inequality sign
-2x<-12
x>6
Answer: 271.
Step-by-step explanation:
When the prior population proportion of success is not available, then the formula to find the sample size is given by :-
![n=00.25(\dfrac{z_{\alpha/2}}{E})^2](https://tex.z-dn.net/?f=n%3D00.25%28%5Cdfrac%7Bz_%7B%5Calpha%2F2%7D%7D%7BE%7D%29%5E2)
Given : Significance level : ![\alpha: 1-0.90=0.1](https://tex.z-dn.net/?f=%5Calpha%3A%201-0.90%3D0.1)
By using the standard normal distribution table ,
Critical value : ![z_{\alpha/2}=1.645](https://tex.z-dn.net/?f=z_%7B%5Calpha%2F2%7D%3D1.645)
Margin of error : ![E=0.05](https://tex.z-dn.net/?f=E%3D0.05)
Then , the required minimum sample size will be :-
![n=0.25(\dfrac{(1.645)}{0.05})^2=270.6025\approx271](https://tex.z-dn.net/?f=n%3D0.25%28%5Cdfrac%7B%281.645%29%7D%7B0.05%7D%29%5E2%3D270.6025%5Capprox271)
Hence, the required minimum sample size is 271.