Interesting problem.
First - let's figure cost of each uniform at purchase.
3,000/40 = $75 each
When some uniforms were returned at $40 - there was a difference of $35 in what they paid and what they rec'd in return. ($75 - 35 = $40)
You will save $9
Convert 20% to decimal
Each % is 0.01 so 20×0.01=0.2
Then multiply
45×0.2=9
J = 20
it's very easy, aren't you really able to find that by yourself?
The coefficient of determination can be found using the following formula:
![r^2=\mleft(\frac{n(\sum ^{}_{}xy)-(\sum ^{}_{}x)(\sum ^{}_{}y)}{\sqrt[]{(n\sum ^{}_{}x^2-(\sum ^{}_{}x)^2)(n\sum ^{}_{}y^2-(\sum ^{}_{}y)^2}^{}}\mright)^2](https://tex.z-dn.net/?f=r%5E2%3D%5Cmleft%28%5Cfrac%7Bn%28%5Csum%20%5E%7B%7D_%7B%7Dxy%29-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%7D%7B%5Csqrt%5B%5D%7B%28n%5Csum%20%5E%7B%7D_%7B%7Dx%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%5E2%29%28n%5Csum%20%5E%7B%7D_%7B%7Dy%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%5E2%7D%5E%7B%7D%7D%5Cmright%29%5E2)
Using a Statistics calculator or an online tool to work with the data we were given, we get
So the best aproximation of r² is 0.861
Answer: Jeremy drove 84 miles.
Step-by-step explanation:
Let x represent the number of miles that Brenda drove.
If Jeremy drove twice
as far as Brenda, it means that the distance covered by Jeremy would be 2x miles
When they stopped after some time, they were already
126 miles apart. This means that the total distance covered by both of them is 126 miles. Therefore,
x + 2x = 126
3x = 126
x = 126/3
x = 42 miles
The number of miles that Jeremy drove is
42 × 2 = 84 miles