There is kinetic energy when it is sitting at the top, then as it goes towards the bottom, the kinetic energy is transformed into potential energy.
Answer:
v = 3.84 m/s
Explanation:
In order for the riders to stay pinned against the inside of the drum the frictional force on them must be equal to the centripetal force:

where,
v = minimum speed = ?
g = acceleration due to gravity = 9.81 m/s²
r = radius = 10 m
μ = coefficient of friction = 0.15
Therefore,

<u>v = 3.84 m/s</u>
The crate would slide forward
Answer:
D
Explanation:
She says that the object of the experiment is to see how far the string stretches given a mass attached to the string.
The only thing that is at issue is either the mass or the amount the string stretches.
Nothing else matters.
The dependent variable therefore is the amount the string stretches. So the last choice is the answer.
D.
The gravitational of a body is possessed by the body due to the virtue of its position.
The formula for gravitational potential energy is,
P.E = mgh joules
Substituting the values
196*9.8*250= 49k