1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
13

In the figure, a weightlifter's barbell consists of two identical small but dense spherical weights, each of mass 50 kg. These w

eights are connected by a thin 0.96-m rod with a mass of 24 kg. Find the moment of inertia of the barbell through the axis perpendicular to the rod at its center, assuming the two weights are small enough to be treated as point masses.
Physics
1 answer:
kondaur [170]3 years ago
6 0

The moment of inertia is 24.8 kg m^2

Explanation:

The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.

The moment of inertia of the rod about its centre is given by

I_r = \frac{1}{12}ML^2

where

M = 24 kg is the mass of the rod

L = 0.96 m is the length of the rod

Substituting,

I_r = \frac{1}{12}(24)(0.96)^2=1.84 kg m^2

The moment of inertia of one ball is given by

I_b = mr^2

where

m = 50 kg is the mass of the ball

r=\frac{L}{2}=\frac{0.96}{2}=0.48 m is the distance of each ball from the axis of rotation

So we have

I_b = (50)(0.48)^2=11.5 kg m^2

Therefore, the total moment of inertia of the system is

I=I_r + 2I_b = 1.84+ 2(11.5)=24.8 kg m^2

Learn more about inertia:

brainly.com/question/2286502

brainly.com/question/691705

#LearnwithBrainly

You might be interested in
Four charges 7 × 10−9 C at (0 m, 0 m), −9 × 10−9 C at (3 m, 3 m), 7 × 10−9 C at (1 m, 3 m), and −8 × 10−9 C at (−3 m, 2 m), are
Ivanshal [37]

Answer:

Magnitude of the resulting force on the 7 nC charge at the origin:

Fn₁= 23.95*10⁻⁹ N

Explanation:

Look at the attached graphic:

Charges of positive signs exert repulsive forces on q₁ + and charges of negative signs exert attractive forces on q₁ +.

q₁ experiences three forces (F₂₁,F₃₁,F₄₁) and we calculate them with Coulomb's law:

F = (k*q₁*q)/(d)²

d_{12} = \sqrt{3^{2}+3^{2}  }  = \sqrt{18} m : distance from q₁ to q₂

(d₁₂)² = 18 m²

d_{13} =\sqrt{1^{2}+3^{2}  } = \sqrt{10} m  : distance from q₁ to q₃

(d₁₃)² = 10 m²

d_{14} =\sqrt{3^{2}+2^{2}  } = \sqrt{13} m  : distance from q₁ to q₄

(d₁₄)² = 13 m²

K=  8.98755 × 10⁹ N *m²/C²

q₁=  7*10⁻⁹C

k*q₁=8.98755*10⁹ *7*10⁻⁹= 62.9

F₂₁= (62.9)*(9* 10⁻⁹) /(18) = 31.45*10⁻⁹ C

F₃₁= (62.9)*(7* 10⁻⁹) /(10) = 44*10⁻⁹ C

F₄₁= (62.9)*(8* 10⁻⁹) /(13) = 38.7*10⁻⁹ C

x-y components of the net force on q₁ (Fn₁):

α= tan⁻¹(3/3)= 45°  ,  β= tan⁻¹(3/1)= 71.56° , θ= tan⁻¹(2/3)= 33.69°

Fn₁x = F₂₁x+ F₃₁x+F₄₁x

F₂₁x =+ F₂₁*cosα =+ (31.45*10⁻⁹)* (cos 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*cosβ = - ( 44*10⁻⁹)* (cos 71.56°) = -13.91 *10⁻⁹ N

F₄₁x= -F₄₁*cosθ = -(38.7*10⁻⁹)* (cos 33.69°) = -32.2*10⁻⁹ N

Fn₁x = (+22.24 - 13.91 - 32.2)*10⁻⁹ N

Fn₁x = -23.87 *10⁻⁹ N

Fn₁y = F₂₁y+ F₃₁y+F₄₁y

F₂₁x =+ F₂₁*sinα =+ (31.45*10⁻⁹)* (sin 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*sinβ = - ( 44*10⁻⁹)* (sin 71.56°) = -41.74 *10⁻⁹ N

F₄₁x= +F₄₁*sinθ = +(38.7*10⁻⁹)* (sin 33.69°) =+21.47*10⁻⁹ N

Fn₁y = (22.24 -41.74+21.47)*10⁻⁹ N  

Fn₁y = 1.97*10⁻⁹ N

Magnitude of the resulting force on the 7 nC charge at the origin (q₁):

F_{n1} =\sqrt{(Fn_{1x} )^{2}+(Fn_{1y} )^{2} }

F_{n1} =\sqrt{(23.87 )^{2}+(1.97 )^{2} }

Fn₁= 23.95*10⁻⁹ N

8 0
3 years ago
Friction _____.
quester [9]

Answer:

all above

Explanation:

friction is necessary to live

8 0
2 years ago
What type of accidents are among the most common cause of serious work related injuries and deaths
Bezzdna [24]
Trips/slips/falls are among the most common types of work related injuries and/or deaths.
7 0
3 years ago
Read 2 more answers
True or false 6.02x10^23 atoms of oxygen have a mass of 16g ?
il63 [147K]

Answer:

True

Explanation:

The atomic mass of oxygen is 16amu, which means the <em>molar mass</em>, the mass of one mole of oxygen atoms (1 mole = 6.02x10²³), is 16g.

5 0
3 years ago
A 0.500-kg block, starting at rest, slides down a 30.0° incline with static and kinetic friction coefficients of 0.350 and 0.250
Leviafan [203]

Answer:x=23.4 cm

Explanation:

Given

mass of block m=0.5 kg

inclination \theta =30

coefficient of static friction \mu =0.35

coefficient of kinetic friction \mu _k=0.25

distance traveled d=77.3 cm

spring constant k=35 N/m

work done by gravity+work done by friction=Energy stored in Spring

mg\sin \theta d-\mu _kmg\cos \theta d=\frac{kx^2}{2}

mgd\left ( \sin \theta -\mu _k\cos \theta \right )=\frac{kx^2}{2}

0.5\times 9.8\times 0.773\left ( \sin 30-0.25\cos 30\right )=\frac{35\times x^2}{2}

x=\sqrt{\frac{2\times 0.5\times 9.8\times 0.773(\sin 30-0.25\times \cos 30)}{35}}

x=0.234 m

x=23.4 cm

6 0
3 years ago
Other questions:
  • Name the two components that make orbital motion, and explain why objects stay in orbit.
    10·1 answer
  • By what factor must we increase the amplitude of vibration of an object at the end of a spring in order to double its maximum sp
    9·1 answer
  • Many hard-of-hearing people like sound compressed because they remain sensitive to ________ sounds. prolonged high-pitched frequ
    5·1 answer
  • Can I apply my homework questions about physic?
    7·2 answers
  • On a map, a measurement of 1.0 cm represents a velocity of 100 m/s. If you were to draw a vector on the map that represents 80 m
    10·1 answer
  • "In this lesson, you learned about renewable energy resources and nonrenewable energy resources. Think about the resources discu
    7·1 answer
  • What is the speed of light across space?
    5·1 answer
  • What is polarization. How can we remove it?
    12·1 answer
  • I WILLL MARK YOUUUUUUU HELPPPP
    6·2 answers
  • 3. Saagar gives a certain teacher some sass followed by an eye roll. Suddenly, a shoe is thrown at him.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!