<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
Answer:
<h3>The answer is 8.91 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>8.91 m/s²</h3>
Hope this helps you
The Hubble Space Telescope is a joint ESA/NASA project and was launched in 1990 by the Space Shuttle mission STS-31 into a low-Earth orbit 569 km above the ground. During its lifetime Hubble has become one of the most important science projects ever. Hope this helps! ~ Autumn :)
Incomplete question as number of moles and length is missing.So I have assumed 3 moles and length of 0.300 m.So the complete question is here:
Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m.What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0∘C?
Answer:
The Force act on each side is 2.43×10⁴N
Explanation:
Given data
n=3 mol
L=0.3 m
Temperature=20.0°C=293 K
To find
Force F
Solution
To get force act on each side it would employ by
F=P.A
Where P is pressure
A is Area
First we need to find pressure by applying ideal gas law
So

So The Force is given as:

The Force act on each side is 2.43×10⁴N