Answer:
The magnitude of the car's acceleration as it slows during braking is 36.81 m/s²
Explanation:
From the question, the given values are as follows:
Initial velocity, u = 90 m/s
final velocity, v = 0 m/s
distance, s = 110 m
acceleration, a = ?
Using the equation of motion, v² = u² + 2as
(90)² + 2 * 110 * a = 0
8100 + 220a = 0
220a = -8100
a = -8100/220
a = -36.81 m/s²
The value for acceleration is negative showing that car is decelerating to a stop. The magnitude of the car's acceleration as it slows during braking is therefore 36.81 m/s²
270/70^2 = x/80^2
Cross multiply
270 (6400) = 4900x
x = 270(6400)/4900
352 and 32/49 feet
Hope this helps
1. B. Hemo is on a machine, peritoneal is in the abdomen
2. B. Nothing is as good as having your own kidney, and not everyone is a good candidate for all types of dialysis.
3. Also B. Peritoneal dialysis is done over a longer period of time, up to 24 hours. Hemodialysis is done in a few hours. Your kidney works 24/7.
Every point on the surface must have the same rotational speed.
Otherwise some places would rotate away from other places.
If the next block of your city rotated faster than the block that you live on,
then you could sit at home, look out the window, and watch your school
rotate past your house.
The map of the continents on the Earth would change constantly.
Answer:
a = 1 m/s² and
Explanation:
The first two parts can be seen in attachment
We use Newton's second law on each axis
Y axis
Ty - W = 0
Ty = w
X axis
Tx = m a
With trigonometry we find the components of tension
Sin θ = Ty / T
Ty = T sin θ
Cos θ = Tx / T
Tx = T cos θ
We calculate the acceleration with kinematics
Vf = Vo + a t
a = (Vf -Vo) / t
a = (20 -10) / 10
a = 1 m/s²
We substitute in Newton's equations
T Sin θ = mg
T cos θ = ma
We divide the two equations
Tan θ = g / a
θ = tan⁻¹ (g / a)
θ = tan⁻¹ (9.8 / 1)
θ = 84º
We see that in the expression of the angle the mass does not appear therefore you should not change the angle