Answer: The formula of Newtons second law of motion is F=MA so therefore it would be written like this Force = Mass X Acceleration
F = 5 x 2
F = 10 N
Converting
releases
absorbs
cooling
transfer
liberating
Answer:
11 m/s
Explanation:
Draw a free body diagram. There are two forces acting on the car:
Weigh force mg pulling down
Normal force N pushing perpendicular to the incline
Sum the forces in the +y direction:
∑F = ma
N cos θ − mg = 0
N = mg / cos θ
Sum the forces in the radial (+x) direction:
∑F = ma
N sin θ = m v² / r
Substitute and solve for v:
(mg / cos θ) sin θ = m v² / r
g tan θ = v² / r
v = √(gr tan θ)
Plug in values:
v = √(9.8 m/s² × 48 m × tan 15°)
v = 11.2 m/s
Rounded to 2 significant figures, the maximum speed is 11 m/s.
Answer:
E) True. The girl has a larger tangential acceleration than the boy.
Explanation:
In this exercise they do not ask us to say which statement is correct, for this we propose the solution to the problem.
Angular and linear quantities are related
v = w r
a = α r
the boy's radius is r₁ = 1.2m the girl's radius is r₂ = 1.8m
as the merry-go-round rotates at a constant angular velocity this is the same for both, but the tangential velocity is different
v₁ = w 1,2 (boy)
v₂ = w 1.8 (girl)
whereby
v₂> v₁
reviewing the claims we have
a₁ = α 1,2
a₂ = α 1.8
a₂> a₁
A) False. Tangential velocity is different from zero
B) False angular acceleration is the same for both
C) False. It is the opposite, according to the previous analysis
D) False. Angular acceleration is equal
E) True. You agree with the analysis above,