<span>Germination
Germination is the procedure of seeds forming into new plants. To start with, ecological conditions must trigger the seed to develop. For the most part, this is controlled by how profound the seed is planted, water accessibility, and temperature. At the point when water is abundant, the seed loads with water in a procedure called imbibition.</span>
<h2>
Answer: Diffraction</h2><h2 />
Diffraction is a characteristic phenomenon that occurs in all types of waves
.
In this sense, <u>diffraction</u> happens when a wave (the light in this case) meets an obstacle or a slit .When this occurs, the light bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming <u><em>multiple patterns</em></u> with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that <u>the obstacle must be comparable in size (similar size) to the size of the wavelength.
</u>
<u />
<u />
ThIs is the same type of problem
find out the time value
3 = 1/2*a*T^2
6/10 = t^2
t = 0.77 seconds
and the distance is given 5 m
thus speed ,= distance/time
speed = 5/0.77
= 6.45 m/s
If Calcium lost two electrons, it would have the same number of electrons as Argon which has 18 electrons.
Answer:
The vapor pressure at 60.6°C is 330.89 mmHg
Explanation:
Applying Clausius Clapeyron Equation
![ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%20%3D%20%5Cfrac%7B%5Cdelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
Where;
P₂ is the final vapor pressure of benzene = ?
P₁ is the initial vapor pressure of benzene = 40.1 mmHg
T₂ is the final temperature of benzene = 60.6°C = 333.6 K
T₁ is the initial temperature of benzene = 7.6°C = 280.6 K
ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol
R is gas rate = 8.314 J/mol.k
![ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%20%5Cfrac%7B31%2C000%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B280.6%7D-%20%5Cfrac%7B1%7D%7B333.6%7D%5D%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%280.003564%20-%200.002998%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%20%280.000566%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%202.1104%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%20e%5E%7B2.1104%7D%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%208.2515%5C%5C%5C%5CP_2%20%3D%20%2840.1%2A8.2515%29mmHg%20%3D%20330.89%20mmHg)
Therefore, the vapor pressure at 60.6°C is 330.89 mmHg