The speed of a electron that is accelerated from rest through an electric potential difference of 120 V is 
<h3>
How to calculate the speed of the electron?</h3>
We know, that the energy of the system is always conserved.
Using the Law of Conservation of energy,
U=0
Here, K is the kinetic energy and U is the potential energy.
Now, substituting the formula of U and K, we get:
=0------(1)
Here,
m is the mass of the electron
v is the speed of the electron
q is the charge on the electron
V is the potential difference
Let
and
represent the final and initial speed.
Here,
=0
Solving for
, we get:


=6.49
m/s
To learn more about the conservation of energy, refer to:
brainly.com/question/2137260
#SPJ4
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer:
-72\times 10^{-19}C[/tex]
Explanation:
Both electron and proton have the same amount of charge but signs are opposite , electron contains negative charge and proton contain positive charge
Charge on 1 electron = 
So charge on 206 electron 
Charge on 1 proton = 
So charge on 161 electron 
So charge of the system = 

A. Ocean winds bring rain and fog and often bring warm water that keeps the climate mild
It is transferred evenly to water through air