Answer:
The thrust is 
Explanation:
Given that,
Mass of gas, 
The rate at which the gas is expelling, 
We need to find the thrust produced by the gas.
We know that force is equal to the rate of change of momentum. So,

Also, p = mv

So,

So, the thrust is 
Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


Answer:
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion.
Explanation:
Complete Question
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.)
mm/s
Answer:
The drift velocity is 
Explanation:
From the question we are told that
The current on the copper is 
The cross-sectional area is
The number of copper atom in the wire is mathematically evaluated

Where
is the density of copper with a value 
is the Avogadro's number with a value 
Z is the molar mass of copper with a value 
So
Given the 1 atom is equivalent to 1 free electron then the number of free electron is

The current through the wire is mathematically represented as

substituting values

=> 
Answer:
fo = 378.52Hz
Explanation:
Using Doppler effect formula:

where
f' = 392 Hz
C = 340m/s
Vb = 20m/s
Va = 31m/s
Replacing these values and solving for fo:
fo = 378.52Hz