Answer:
F = 200 N
Explanation:
Given that,
The mass suspended from the rope, m = 20 kg
We need to find the resultant force acting on the rope. The resultant force on the rope is equal to its weight such that,
F = mg
Where
g is acceleration due to gravity
Put all the values,
F = 20 kg × 10 m/s²
F = 200 N
So, the resultant force on the mass is 200 N.
Answer:
Accuracy is how close a measured value is to an accepted value. <u>Precision is how close measurements are to one another.</u> To make measurements, you have to evaluate both the accuracy and the precision to get a correct value.
Answer:because the parachute is built so the wind will push up on it make the man/woman glide or fall slowly will a stone which has a lot of desentity
falls through the air faster do to is weight and shape .
Explanation:
Here is the full question:
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Answer:
a) 0.85 m
b) 0.98 m
c) 0.76 m
Explanation:
Given that: the radius of gyration
So, moment of rotational inertia (I) of a cylinder about it axis = 





k = 0.8455 m
k ≅ 0.85 m
For the spherical shell of radius
(I) = 




k = 0.9797 m
k ≅ 0.98 m
For the solid sphere of radius
(I) = 




k = 0.7560
k ≅ 0.76 m