Bicycle has 2 wheels and 2 pedals
tricycle has 3 wheels and 2 pedals
EQ 1 : 2b + 2t = 170 pedals
EQ 2: 2b +3t = 206 wheels
subtract EQ 1 from EQ 2
2b +3t = 206 - 2b + 2t = 170 = t=36
there were 36 tricycles
36 x 2 = 72 pedals
170 pedals - 72 = 98 pedals left
98/2 = 49 bicycles
36 Tricycles and 49 bicycles
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be
Answer:
Its 8
Step-by-step explanation:
I know this because 8 is the only number they give you the other numbers they dont suply. Ps dont use my spelling and you might want to come up with a better answer. good luck
A benefit is the technology can be more aaurate and you can use a compass and a straightedge wrong and get lost. Also the compass can break
Answer:
<h3>The answer is option B</h3>
Step-by-step explanation:
To find the constant in the equation pick any values of x and y and substitute it into the equation
First make constant the subject
constant = height × width
From the question
Using
height = 30
width = 2
We have
constant = 30 × 2 = 60
Again
Using
height = 12
width = 5
constant = 12 × 5 = 60
Since the constant is the same for any values used
<h3>constant = 60</h3>
Hope this helps you