V = f x lamda
Wave speed = frequency x wavelength
2x1 = 2 so wave speed = 2m/s
Let me know if you have any questions
P1v1/t1 = p2v2/t2
p1=475, v1=4, t1=290
v2=6.5, t2=277
solve for p2 in kpa
An interesting problem, and thanks to the precise heading you put for the question.
We will assume zero air resistance.
We further assume that the angle with vertical is t=53.13 degrees, corresponding to sin(t)=0.8, and therefore cos(t)=0.6.
Given:
angle with vertical, t = 53.13 degrees
sin(t)=0.8; cos(t)=0.6;
air-borne time, T = 20 seconds
initial height, y0 = 800 m
Assume g = -9.81 m/s^2
initial velocity, v m/s (to be determined)
Solution:
(i) Determine initial velocity, v.
initial vertical velocity, vy = vsin(t)=0.8v
Using kinematics equation,
S(T)=800+(vy)T+(1/2)aT^2 ....(1)
Where S is height measured from ground.
substitute values in (1): S(20)=800+(0.8v)T+(-9.81)T^2 =>
v=((1/2)9.81(20^2)-800)/(0.8(20))=72.625 m/s for T=20 s
(ii) maximum height attained by the bomb
Differentiate (1) with respect to T, and equate to zero to find maximum
dS/dt=(vy)+aT=0 =>
Tmax=-(vy)/a = -0.8*72.625/(-9.81)= 5.9225 s
Maximum height,
Smax
=S(5.9225)
=800+(0.8*122.625)*(5.9225)+(1/2)(-9.81)(5.9225^2)
= 972.0494 m
(iii) Horizontal distance travelled by the bomb while air-borne
Horizontal velocity = vx = vcos(t) = 0.6v = 43.575 m/s
Horizontal distace travelled, Sx = (vx)T = 43.575*20 = 871.5 m
(iv) Velocity of the bomb when it strikes ground
vertical velocity with respect to time
V(T) =vy+aT...................(2)
Substitute values, vy=58.1 m/s, a=-9.81 m/s^2
V(T) = 58.130 + (-9.81)T =>
V(20)=58.130-(9.81)(20) = -138.1 m/s (vertical velocity at strike)
vx = 43.575 m/s (horizontal at strike)
resultant velocity = sqrt(43.575^2+(-138.1)^2) = 144.812 m/s (magnitude)
in direction theta = atan(43.575,138.1)
= 17.5 degrees with the vertical, downward and forward. (direction)
Answer:
252J
Explanation:
Given parameters:
Distance = 72m
Force = 3.5N
Unknown:
Work done on the house = ?
Solution:
Work done is the force applied to move a body through a particular distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 3.5 x 72 = 252J