The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
and closing
.
The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.
The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.
The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.
The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.
The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.
Answer:
Explanation:
the sphere is solid and conducting, so the charge is uniformly distributed over its volume.
Answer:
2.89 x 10^6 N
Explanation:
The explanation is shown in the picture attached
Answer:
42 m/s
Explanation:
by definition of the velocity(speed) of a wave,
The velocity of light, v, is the product of its wavelength, λ , and its frequency, f.
V= fλ
frequency - number of occurances in a unit time
(check the graph)
