1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
3 years ago
15

A cruise ship is having troubles with buoyancy. What is a reasonable solution? A. Increase the weight of the ship above water B.

Increase the mass of the ship C. Decrease the volume of the ship D. Spread the weight of the ship over a greater volume
Physics
2 answers:
finlep [7]3 years ago
8 0

Answer:

Explanation:

Spread the weight of the ship over a greater volume

Setler [38]3 years ago
5 0

If a cruise ship is having troubles with buoyancy, then spread the weight of the ship over a greater volume.

Answer: Option D

<u>Explanation: </u>

Buoyancy is the upward thrusting phenomenon of water acting on any object immersed partially or fully in water body. Hence, it creates the buoyant forces that is inversely proportionate to the immersing body's density. If the immersing body's density is higher than the density of the immersing medium then the body will get completely immersed in the water.

Similarly, in case of less, the buoyant forces act on the body will prevent it from complete immersion and allow it to float on water. Mostly cruise ships and other navy vessels use this phenomenon to keep on floating on surface of water.

In the present condition, the solution for buoyancy problem faced by a cruise ship can be solved by decreasing the density of the ship. And the ship's density can be decreased by increasing the ship's volume or by spreading the ship's weight over a greater volume.

You might be interested in
Who reported four “element” classifications, but included some substances that were combinations of elements rather than true el
marishachu [46]

Explanation :

Antoine-Laurent Lavoisier reported four "element" classifications but included some substances that were combinations of elements rather than true elements in his listing.

He is also known as " father of modern chemistry". He gives the modern system of naming chemical substances. He also gives a theory for chemical reactivity of the oxygen.

5 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
List 5 possible effects of not adhering to standards of measurement
murzikaleks [220]

Answer:

factual evidence of customer-service levels.

better understanding of cross-functional performance.

enhanced alignment of operations with strategy.

evidence-based determination of process improvement priorities.

detection of performance trends.

better understanding of the capability range of a process.

3 0
3 years ago
Explain what happens to the pitch of a cell phone ringing when the amplitude of a sound wave increases.
rewona [7]
As the amplitude of a sound wave increases the pitch of the ringing would be much higher (like if you were to inhale helium.. just with a phone)
3 0
3 years ago
Read 2 more answers
After traveling for 6.0 seconds, a runner reaches 10m/s. What is the runner's acceleration?
luda_lava [24]

After traveling for 6.0 seconds, a runner reaches 10m/s. What is the runner's acceleration? Answer: 1.67 m/s2

4 0
2 years ago
Other questions:
  • The greater the mass is in an object, the higher resistance to a change in movement the object will have.
    12·2 answers
  • With a diameter that's 11 times larger than Earth's, _______ is the largest planet.
    13·2 answers
  • A hair dryer is basically a duct of constant diameter in which a few layers of electric resistors are placed. A small fan pulls
    12·2 answers
  • A small car and a large truck are both driving south at 40 km/h. Which of the following is true?
    15·1 answer
  • a 2.80 kg mass is dropped from a height of 4.50 m. find its potential energy(PE) at the moment it is dropped. PLEASE HELP
    14·1 answer
  • 4) The mass of Pluto is 1.31 x 1022 kg and its radius is 1.15 x 106 m. What is the acceleration of
    5·1 answer
  • An 8.30 kg crate is pushed with a 17.7 N force. How fast does it accelerate?
    14·2 answers
  • What is the affect of applying an unbalanced force on an object?​
    10·1 answer
  • A body floats at a volume of 2/5 when it is placed in oil, how dense the object is ....s=900km/m3​
    10·1 answer
  • An object with a mass of 70.5 kg is placed on a 2-meter strand of metal (with a 2-millimeter radius) hanging from the ceiling. I
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!