Question #1:
a). The sketch is attached to this answer.
b). The equivalent resistance of 30Ω and 50Ω in parallel is
1 / (1/30 + 1/50) =
18.75 Ωc). I = V/R = (100/30) =
(3 and 1/3) Amperesd). Follow the wires, and you see that the 50Ω resistor is
connected directly to the battery, and so is the voltmeter.
So the voltage across the 50Ω resistor, and the reading
on the voltmeter, is
100 volts.e). I = V/R
Through the 30Ω resistor: I = 3-1/3 A
Through the 50Ω resistor: I = 2 A
f). In the parallel circuit, both resistors are connected
directly to the battery. So neither resistor even knows
that the other one is there.
Each resistor sees 100 volts,
and the current through each resistor is 100/R, just as if
it were the only resistor in the circuit.
Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°
Answer:
Around 2.8212 sec
Explanation:
Given the eqn x=1/2at^2+vot
your vo=0
39=1/2(-9.8)t^2
=7.95=t^2
=2.82sec
This statement is true. The greater the mass is in an object, it is indeed the higher resistance to a change in movement the object will have. That only mean that the mass of an object and its resistance to change of movement is directly proportional.
I'm gonna have to assume the girl is on the right side and boy on left.
The net force is the sum of all forces on an object (includes negatives).
Let's say the force of the boy is variable <em>b</em>. Use the formula F = ma.
<em>b </em>+ 3.5 = 0.2(2.5)
This is now simple algebra. Solve to get that <em />the boty is exerting a force of -3N to the left.