At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²
Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s
Point 2 (stagnation):
At the stagnation point, the velocity is zero.
The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
= 314.37 lb/ft²
= 314.37/144 = 2.18 lb/in²
Answer: 2.2 psi
A wavelength is the distance
between two identical peaks, troughs or crests in a wave. The unit of
wavelength can be meters, centimeters, millimeters, nanometers and so on.
Land surfaces change, erosion happens, the ground collapses, etc.
You will probably be fit to be a elementary school teacher
Answer:
A. 490
Explanation:
soln
mass = m = 5kg
Height = h = 10m
Acceleration due to gravity = g = 9.8ms²
K.E = 1/2 × mass × (velocity)²
Recall from equations of motion
v² = u² + 2gh
Therefore,
K.E = 1/2 × mass × ( u² + 2gh)
K.E = 1/2 × 5 × ( 0² + 2×10×9.8)
K.E = 1/2 × 5 × 196
K.E = 1/2 × 980
K.E = 490 Joules