Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form

Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.
Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is
B. inverse plot, 0.51 kilograms/meter3
Answer:
Neutrally charged!!!!!!!!!!!!!!!!!!!!!
Explanation:
Answer:
jejjdedjd sidjjejdd jsms
Explanation:
jdjdndjdjjdj jsnssjns jsjsjs
Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs