1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
15

Match each coordinate used on a globe of earth to its counterpart on the celestial sphere

Physics
1 answer:
nika2105 [10]3 years ago
3 0
I hope it will help u!!!!!!!
Equator------------------C::::::::::::::
Latitude------------------B::::::::::::::
Longitude---------------A::::::::::::::
You might be interested in
A spherical asteroid of average density would have a mass of 8.7×1013kg if its radius were 2.0 km. 1. If you and your spacesuit
Law Incorporation [45]

1. 0.16 N

The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

F=G\frac{Mm}{r^2}

where

G is the gravitational constant

M=8.7\cdot 10^{13}kg is the mass of the asteroid

m = 100 kg is the mass of the man

r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid

Substituting, we find

F=(6.67\cdot 10^{-11}m^3 kg^{-1} s^{-2})\frac{(8.7\cdot 10^{13} kg)(110 kg)}{(2000 m)^2}=0.16 N

2. 1.7 m/s

In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

m\frac{v^2}{r}=G\frac{Mm}{r^2}

where v is the minimum speed required to stay in orbit.

Re-arranging the equation and solving for v, we find:

v=\sqrt{\frac{GM}{r}}=\sqrt{\frac{(6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2})(8.7\cdot 10^{13} kg)}{2000 m}}=1.7 m/s

3 0
3 years ago
A locomotive accelerates a 25-car train along a level track. Every car has a mass of 7.7 ✕ 104 kg and is subject to a friction f
MaRussiya [10]

To solve the problem it is necessary to apply the concepts related to Force of Friction and Tension between the two bodies.

In this way,

The total mass of the cars would be,

m_T = 25(7.7*10^4)Kg

m_T = 1.925*10^6Kg

Therefore the friction force at 29Km / h would be,

f=250v

f= 250*29Km/h

f = 250*29*(\frac{1000m}{1km})(\frac{1h}{3600s})

f = 2013.889N

In this way the tension exerts between first car and locomotive is,

T=m_Ta+f

T=(1.925*10^6)(0.2)+2013.889

T= 3.8701*10^5N

Therefore the tension in the coupling between the car and the locomotive is 3.87*10^5N

6 0
2 years ago
Why must the height of the meniscus in the graduated cylinder match the height of the water in the tub when measuring volume?
galben [10]

Answer:

See explanation

Explanation:

First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.

<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>

Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water  gives a concave curve.

If you read it and matches the height of water, you are getting two results:

One, get an accurate value or volume, because it's been done at eye level.

The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.

8 0
3 years ago
A bullet is shot from a rifle with a velocity of 720.0 m/s what time is required for the bullet to strike a target 324.0m to the
Basile [38]

The bullet will strike the target placed in 324.0 m in the East in 0.45 seconds.

<u>Explanation:</u>

As we all know the epic relation between distance, speed and time; we cam easily estimate the time in which an object can reach to the destination or target.

As here in this case, we know the distance of the target and the velocity of a bullet exerted from a rifle given as follows,

Distance of the Target from the rifle edge = 324.0 m

Velocity of bullet exerted from the rifle = 720 m/s

Since we know that,

      \text {velocity}=\frac{\text {distance}}{\text {time}}

or

       \text {Time}=\frac{\text {distance}}{\text {velocity}}

We can simply implement all the values in the formula and get the results i.e the time required by the bullet to hit the target. Since both the values are in S.I units measures, we don't need to change or convert any of them. Hence,

       \text { Time }=\frac{324}{75}=0.45 \text { seconds }

Therefore, the bullet will hit the target in 0.45 seconds.

4 0
3 years ago
A woman on a bridge 95.6 m high sees a raft floating at a constant speed on the river below. She drops a stone from rest in an a
NARA [144]

Answer:

The speed of the raft is 1.05 m/s

Explanation:

The equation for the position of the stone is as follows:

y = y0 + v0 · t + 1/2 · g · t²

Where:

y = height of the stone at time t

y0 = initial height

v0 = initial speed

t = time

g = acceleration due to gravity

The equation for the position of the raft is as follows:

x = x0 + v · t

Where:

x = position of the raft at time t

x0 = initial position

v = velocity

t = time

To find the speed of the raft, we have to know how much time the raft traveled until the stone reached the river. For that, we can calculate the time of free fall of the stone:

y = y0 + v0 · t + 1/2 · g · t²      (v0=0 because the stone is dropped from rest)

If we place the origin of the frame of reference at the river below the bridge:

0 m = 95.6 m - 9.8 m/s² · t²

-95.6 m / -9,8 m/s² = t²

t = 3.12 s

We know that the raft traveled (4.84 m - 1.56 m) 3.28 m in that time, then the velocity of the raft will be:

x/t = v

3.28 m / 3.12 s = v

v = 1.05 m/s

5 0
2 years ago
Read 2 more answers
Other questions:
  • It takes 5.0 seconds for a wave with a wavelength of 2.5 m to travel past your location. What’s the period of the wave. What is
    7·1 answer
  • 04-9 (ML 6.12) A pristine stream flowing at 100 cubic feet per second (cfs) in the Rocky Mountains contains 5 mg/L of suspended
    5·1 answer
  • A sidewalk has a length of 75.00m. How many inches is this? (Hint: you need to use two unit conversion fraction. 1 cm equals abo
    9·1 answer
  • A convex lens bulges outward in its center. and it refracts light rays towards its center. Which represents a convex lens? A) A
    13·2 answers
  • Describe the wavelengths of visible light and list two ways in which they are different from the rest of the electromagnetic spe
    8·1 answer
  • Heat transfer occurs only in 1 case from body II to body I, 2. Heat transfer occurs only in 2 cases from body I to body II, 3. H
    13·1 answer
  • For an object to appear red, what must happen?
    12·1 answer
  • A 17Kg sitting on a shelf has a potential energy of 350J. How high is the shelf? Round your number to the nearest whole number
    8·1 answer
  • What is the maximum mass that can hang without sinking from a 50-cm diameter Styrofoam sphere in water
    12·1 answer
  • You accidentally drop an eraser out of the window of an apartment 15 m above the ground
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!