Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long
Using the following formula for linear-motion, the missing variable can be solved:
s = Vi * t + 1/2 (a * t^2)
Where: s = displacement = 29.7 m
Vi = initial velocity = 8.5 m/s
a = acceleration = 9.8
t = time = ?
Substituting:
29.7 = 8.5t + 1/2 (9.8*t^2)
29.7 = 8.5t + 4.9t^2
Dividing both sides by 4.9:
6.06 = 1.73t + t^2
t^2 + 1.73t - 6.06 = 0
(t - 1.74)(t + 3.48) = 0
t = 1.74s
From the above values, the correct answer is 1.74 seconds.
Explanation:
In Europe the standard voltage in homes is 220 V instead of the 120 V used in the United States.
100-W European bulb would be intended for use with a 220-V potential difference.
(a) If V = 220 V and P = 100 W
Power :

If you bring a "100-W" European bulb home to the untied States, what should be its US power rating. So,

or
P = 29.8 watts
(b) Let I is the current will the 100-W European bulb draw in normal use in the United States. So,

Hence, this is the required solution.
Answer:
When the electrons jump to a higher energy state, they release energy as electromagnetic radiation, light.
Explanation:
When the solar wind gets past the magnetic field and travels towards the Earth, it runs into the atmosphere. As the protons and electrons from the solar wind hit the particles in the Earth's atmosphere, they release energy – and this is what causes the northern lights.
Assuming that it continues to accelerate at the same rate it will take another 10 seconds to reach 40 m/s.
Answer:
Explanation:
Since the first question states that there is a change in the velocity from rest to 20 m/s in 10 seconds time interval. So the acceleration experienced by the car during this 10 seconds should be determined first as follows:
Acceleration = (final velocity-initial velocity)/Time
Acceleration = (20-0)/10 = 2 m/s².
So this means the car is traveling with an acceleration of 2 m/s².
As it is stated that the car continues to move with same acceleration, then in the second case, the acceleration is fixed as 2 m/s², initial velocity as 20 m/s and final velocity as 40 m/s. So the time taken for the car to reach this velocity with the constant acceleration value will be as follows:
Time = Change in velocity/Acceleration
Time = (40-20)/2 = 20/2=10 s
So again in another 10 seconds by the car to reach 40 m/s from 20 m/s. Similarly the car will take a total of 20 seconds to reach from rest to 40 m/s value for velocity.