Answer:
??
Explanation:
what's the actual question
Refraction refers to C. the bending of light rays when they pass from one medium into another
Explanation:
Refraction is a phenomenon typical of wave. Refraction occurs when a wave travels through the boundary between two different mediums. When this occurs, the wave changes speed, wavelength and direction (but the frequency remains the same).
In particular, the direction of the refracted ray is determined by Snell's Law:

where
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence, which is the angle between the direction of the incident wave and the normal to the boundary
is the angle of refraction, which is the angle between the direction of the refracted wave and the normal to the boundary
Therefore, the correct description of refraction is
C. the bending of light rays when they pass from one medium into another
Learn more about refraction:
brainly.com/question/3183125
brainly.com/question/12370040
#LearnwithBrainly
Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec
Answer:
This can be translated to:
"find the electrical charge of a body that has 1 million of particles".
First, it will depend on the charge of the particles.
If all the particles have 1 electron more than protons, we will have that the charge of each particle is q = -e = -1.6*10^-19 C
Then the total charge of the body will be:
Q = 1,000,000*-1.6*10^-19 C = -1.6*10^-13 C
If we have the inverse case, where we in each particle we have one more proton than the number of electrons, the total charge will be the opposite of the one of before (because the charge of a proton is equal in magnitude but different in sign than the charge of an electron)
Q = 1.6*10^-13 C
But commonly, we will have a spectrum with the particles, where some of them have a positive charge and some of them will have a negative charge, so we will have a probability of charge that is peaked at Q = 0, this means that, in average, the charge of the particles is canceled by the interaction between them.