Copper is a good conductor of heat. This means that if you heat one end of a piece of copper, the other end will quickly reach the same temperature. Most metals are pretty good conductors; however, apart from silver, copper is the best.
Aluminum is an excellent heat and electricity conductor and in relation to its weight is almost twice as good a conductor as copper.
Glass is a very poor heat conductor. It has one of the lowest possible heat conduction a solid (without air trapped in it) can possibly have, this is mostly due to its lack of ordered crystal structure. Since it's an insulator, the electronic contribution to the thermal conductivity is very small.
Metals and stone are considered good conductors since they can speedily transfer heat, whereas materials like wood, paper, air, and cloth are poor conductors of heat. ... These include copper (92), iron (11), water (0.12), and wood (0.03).
Wood and Glass do not conduct heat well, aluminum is the best for him to choose because
aluminum conducted heat the fastest at an average of 14 seconds. ... Aluminum has the ability to absorb heat faster than copper, and when removed from the heat source, will cool faster because it is less dense than copper
Answer:
Carbon Dioxide is an Infrared Radiation Absorber. The (CO2) molecules also emits the absorbed infrared (IR) radiation energy. The photon energy from the infrared radiation causes the CO2 molecule to vibrate. Only some of its vibrational modes absorb infrared radiation
Explanation:
Its linear structure is considered when working with the formula to calculate the number of molecular vibrational modes. It has 3n - 4 vibrational modes, where n is the number of atoms in a compound of CO2
With 3 atoms, CO2 has
3n−5=4 types or patterns of vibration
1. The symmetric stretch
2. The asymmetric stretch
3. The bend
The symmetric stretch vibrational mode is ir-inactive.
The asymmetric stretch is ir-active as it results in changes in dipole moment
The bend is ir-active as well as it results in a change in dipole moment too.
Sodium-25 after 3 minutes : 1.0625 mg
<h3>Further explanation</h3>
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
<h3 />
No=8 mg
t1/2=60 s
T=3 min=180 s

1 mole Hg ---------------- 6.02x10²³ atoms
?? ------------------------- 1.30 x10⁷ atoms
1.30x10⁷ x 1 / 6.02x10²³ =
= 1.30x10⁷ / 6.02x10²³ => 2.159x10⁻¹⁷ moles
hope this helps!
Answer:
Symbol Ar
Group 18
Electron configuration- 1s² 2s² 3p6 3s² 3p6
Explanation:
The 6 is small and will be placed in top but I don't have the option that's why I wrote like that