Answer:solid: still boi liquid: bouncy boi has: crazy boi
Explanation:
The mixture flow rate in lbm/h = 117.65 lbm/h
<h3>Further explanation</h3>
Given
15.0 wt% methanol
The flow rate of the methyl acetate :100 lbm/h
Required
the mixture flow rate in lbm/h
Solution
mass of methanol(CH₃OH, Mw= 32 kg/kmol) in mixture :

mass of the methyl acetate(C₃H₆O₂,MW=74 kg/kmol,85% wt) in 200 kg :

Flow rate of the methyl acetate in the mixture is to be 100 lbm/h.
1 kg mixture = 0.85 .methyl acetate
So flow rate for mixture :

Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.
Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2
Well electrons are like electricity well it is partly if it went 3 sub levels the electrons would blow up some electricty<span />