Answer:
Synthesis - 4
reversible- 2
exchange- 1
decomposition-3
Explanation:
In synthesis reaction two or more components combines to form a single product. example 2H2+O2⇒2H2O
In reversible reaction two reactants combine to form two products . The products then reacts and forms back the reactants. example N2 +3H2 ⇒2NH3
In exchange reaction there is an alternation of ions of reactants to form new products. AB+CD ⇒AC + BD
In decomposition reaction, molecules of a compound break down by the action of heat or light or catalyst. example CaCO3 ⇒CaO +CO2
Answer:
–2.23 L
Explanation:
We'll begin by calculating the final volume. This can be obtained as follow:
Initial pressure (P₁) = 1.03 atm
Initial volume (V₁) = 3.62 L
Final pressure (P₂) = 2.68 atm
Final volume (V₂) =?
P₁V₁ = P₂V₂
1.03 × 3.62 = 2.68 × V₂
3.7286 = 2.68 × V₂
Divide both side by 2.68
V₂ = 3.7286 / 2.68
V₂ = 1.39 L
Finally, we shall determine the change in volume. This can be obtained as follow:
Initial volume (V₁) = 3.62 L
Final volume (V₂) = 1.39 L
Change in volume (ΔV) =?
ΔV = V₂ – V₁
ΔV = 1.39 – 3.62
ΔV = –2.23 L
Thus, the change in the volume of her lung is –2.23 L.
NOTE: The negative sign indicate that the volume of her lung reduced as she goes below the surface!
This is just addition. Put 2140.56 on top, line up 9.3456 under it appropriately. Doing this will give you the answer: 2149.9056
There can be a lot of meanings for isomers. In this case, we are showing the structural isomers of C₇H₁₆. Based on the chemical formula, CₓH₂ₓ₊₂ it is an alkane. They only differ in the positions of methane branches in the parent carbon chain. Basing on the attached picture, the parent carbon chain is pentane for both isomers. But the methyl branches are on the 2nd & 4th, and 2nd & 3rd carbon for 2,4 - dimethylpentane and 2,3 - dimethylpentane, respectively.
Answer:
109° 27'
Explanation:
The ammonium ion is tetrahedral in shape, all the HNH bonds are exactly at the tetrahedral bond angle since there are only bond pairs in the structure and no lone pairs. Recall that lone pairs decrease the bond angke from the ideal value in a tetrahedron due to higher repulsion.