If the sealed glass is permeable to sunlight or to transfer of heat will be an open system, but if the sealed glass is a thermic glass and doesn't allow exchange of heat and exchange of solar energy (for example a mirrored glass that reflect the sunlight) and the terrarium is not exchanging energy with the surroundings will be a closed system. It is a question that doesn't specify too many details about the system in the study. It is hard to give a final answer without making some assumptions.
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Answer:
2.2 moles of Fe will be produced
Explanation:
Step 1: Data given
Number of moles of hydrogen gas = 3.3 moles
Number of moles of iron oxide = 1.5 moles
Step 2: The balanced equation
3H2 + Fe2O3 → 2Fe + 3H2O
Step 3: Calculate the limiting reactant
For 3 moles H2 we need 1 mol Fe2O3 to produce 2 moles Fe and 3 moles H2O
Hydrogen gas is the limiting reactant. It will completely be consumed (3.3 moles). Fe2O3 is in excess. There will react 3.3 / 3 = 1.1 moles
There will remain 1.5 - 1.1 = 0.4 moles Fe2O3
Step 4: Calculate moles Fe
For 3 moles H2 we need 1 mol Fe2O3 to produce 2 moles Fe and 3 moles H2O
For 3.3 moles H2 we'll have 2/3 * 3.3 = 2.2 moles Fe
2.2 moles of Fe will be produced
Answer:
See detailed mechanism in the image attached
Explanation:
The mechanism shown in detail below is the synthesis of serine in steps.
The first step is the attack of the ethoxide ion base on the diethyl acetamidomalonate substrate giving the enolate and formaldehyde.
The second step is the protonation of the oxyanion from (1) above to form an alcohol as shown.
Acid hydrolysis of the alcohol formed in (3) above yields a tetrahedral intermediate, a dicarboxyamino alcohol.
Decarboxylation of this dicarboxyamino alcohol yields serine, the final product as shown in the image attached.
The answer is:
B. orbits closer to its parent planet that the most other moons
That is because in Neap Tides, Spring Tide, Lunar Eclipse, Solar Eclipse, and other thing you always see the Moon orbiting the Earth in diagrams.