To have a weight of 2.21N., the ball's mass is (2.21/9.8) = .226kg.
<span>a) d = 1/2 (vt), = 1/2 (18 x .17), = 1.53m. </span>
<span>b) Acceleration of the ball = (v/t), = 18/.17, = 105.88m/sec^2. </span>
<span>f = (ma), = .226 x 105.88, = 23.92N. </span>
Inertia: tendency of an object to resist changes in its velocity. An object at rest has zero velocity - and (in the absence of an unbalanced force) will remain with a zero velocity. Such an object will not change its state of motion (i.e., velocity) unless acted upon by an unbalanced force.
~done by cessly420
mark brainliest please
hope this helped :)
3. A
4.B
3.Since the Earth rotates through two tidal “bulges” every lunar day, we experience two high and two low tides every 24 hours and 50 minutes
4.An eclipse of the Sun happens when the New Moon moves between the Sun and Earth, blocking out the Sun's rays and casting a shadow on parts of Earth
Answer:
Perpendicular to the surface
Explanation:
- Electric field lines represent the direction of the electric field. The electric field lines also correspond to the direction along which the gradient of the electric potential is maximum.
- Equipotentials are lines or surfaces along which the electric potential is constant: the electric potential does not change moving along an equipotential surface.
Given the two definitions, equipotential lines are always perpendicular to the electric field lines. Therefore, in this problem, the direction of the electric field is perpendicular to the spherical equipotential surface.