Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
Electronegativity is the measure of the tendency of an atom to attract a bonding pair of electrons. In the periodic table, electronegativity increase across the period because the charges on the nucleus increase. The correct arrangement for the atoms given above is as follows
Flourine and Francium
Chlorine and Cesium
Nitrogen and Sodium
Phosphorus and Lithium
Nitrogen and Sulphur.
Answer:
Belgium
France
Luxembourg
Explanation:
These are the ones that are in the High Productivity chart, but not in the HDI chart
Its B. Hope this helped :) ♥♥
The launch velocity of the marble launcher is 34.65 m/s
Given that the launch velocity of marble launcher, launches a 25g marble to a distance of 73 cm (0.73 m) and the marble roll up to 6.2 meters before stopping. The launch height is 20 cm (0.2 m).
The time for landing can be calculated by the second equation of motion formula:
h = ut +
g
Let u = 0
0.2 = 0×t +
× 9.8 × 
= 
= 0.04
t = 0.2s
Now, the launch velocity of the marble launcher can be calculated by:
Speed = Distance / Time
Speed = 
Speed = 
Speed = 34.65 m/s
Therefore, the launch velocity of the marble launcher is 34.65 m/s
Know more about Launch velocity: -brainly.com/question/18883779
#SPJ9