The truck would of went 150 miles
4200 N is the tension in the cable that pulls the elevator upwards.
The correct option is A.
<h3>What does tension ?</h3>
Tension is the force that is sent through a rope, thread, or wire whenever two opposing forces pull on it. Along the whole length of the wire, the tensile stress pulls equally on all objects at the ends. Every physical object that comes into contact with that other one exerts force on it.
<h3>Briefing:</h3>
We employ the following formula to determine the cable's tension.
Formula:
T = mg+ma............ Equation 1
Where:
T is the cable's tension.
M = Mass of the elevator and the Joey
Accelerating with a
g = Gravitational acceleration
Considering the query,
Given:
m = (300+60) = 360 kg
a = 2 m/s²
g = 9.8 m/s²
Substitute these values into equation 2
T = (360×9.8)+(360×2)
T = 3528+720
T = 4248 N
T ≈ 4200 to the nearest hundred.
To know more about Tension visit:
brainly.com/question/14177858
#SPJ1
Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:

Explanation:
The given data is as follows.
Resistance (R) = 1200 ohm, Area (A) =
m (as
)
Diameter (d) = 2.3 mm =
m
First, we will calculate the length as follows.
R =
Here,
= resistivity of aluminium = 
Putting the given values above and we will calculate the value of length as follows.
R =
1200 = 
L = 
As the circumference of circular wire = 
or, =
= 
And, number of turns will be calculated as follows.
No. of turns × Circumference = Length of wire
No. of turns × 
= 
Thus, we can conclude that
turns of wire are needed.