Answer: The entropy change of the surroundings will be -17.7 J/K mol.
Explanation: The enthalpy of vapourization for 1 mole of acetone is 31.3 kJ/mol
Amount of Acetone given = 10.8 g
Number of moles is calculated by using the formula:

Molar mass of acetone = 58 g/mol
Number of moles = 
If 1 mole of acetone has 32.3 kJ/mol of enthalpy, then
0.1862 moles will have = 
To calculate the entropy change for the system, we use the formula:

Temperature = 56.2°C = (273 + 56.2)K = 329.2K
Putting values in above equation, we get
(Conversion Factor: 1 kJ = 1000J)
At Boiling point, the liquid phase and gaseous phase of acetone are in equilibrium. Hence,


Answer:
5 mg
Explanation:
If one half life is 4 hours, then 3 half lives is 12 hours.
This means that the sample will decay to 1/8 of its original amount.
So, the answer is 40(1/8) = 5 mg.
The Lyman series can be expressed in the formula <span><span>1/λ</span>=<span>RH</span><span>(1−<span>1/<span>n2</span></span>) where </span><span><span>RH</span>=1.0968×<span>107</span><span>m<span>−1</span></span>=<span><span>13.6eV</span><span>hc
</span></span></span></span>Where n is a natural number greater than or equal to 2 (i.e. n = 2,3,4,...). Therefore, the lines seen in the image above are the wavelengths corresponding to n=2 on the right, to n=∞on the left (there are infinitely many spectral lines, but they become very dense as they approach to n=∞<span> (Lyman limit), so only some of the first lines and the last one appear).
The wavelengths (nm) in the Lyman series are all ultraviolet
:2 3 4 5 6 7 8 9 10 11
Wavelength (nm) 121.6 102.6 97.3 95 93.8 93.1 92.6 92.3 92.1 91.9 91.18 (Lyman limit)
In your case for the n=5 line you have to replace "n" in the above formula for 5 and you should get a value of 95 x 10^-9 m for the wavelength. then you have to use the other equation that convert wavelength to frequency. </span>
Answer:
What group of people ay?
Maybe look at their differences in appearance: height, size, weight, skin color, clothing choice?