You should put when you will leave, where you will be, and what time you will get back.
Answer:
E1 = 2996.667N/C E2 = 11237.5N/C
Explanation:
E1 = kQ1/r^2
=8.99 x 10^9 x 30 x 10^-9/(30x10^-2)^2
= 2996.667N/C
E2 = kQ2/r^2
= 8.99 x 10^9 x 50 x 10^-9/(20x10^-2)^2
= 11237.5N/C
The direction are towards the point a
The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).
- Work function is a material property defined as the minimum amount of energy required to infinitely remove electrons from the surface of a particular solid.
- The potential difference required to support all emitted electrons is called the stopping potential which is given by
.....(1) - where
is the stopping potential and e is the charge of the electron given by
.
It is given that work function (Ф) of monochromatic light is 2.50 eV.
Einstein photoelectric equation is given by:
....(2)
where K.E(max) is the maximum kinetic energy.
Substituting (1) into (2) , we get

As we know that
....(3)
where Speed of light,
and Planck's constant , 
From equation (3) , we get

Learn about more einstein photoelectric equation here:
brainly.com/question/11683155
#SPJ4
Answer:
1.85c
Explanation:
a photon moves at c, the electron is moving at 0.85c, and since they are moving in opposing directions, the relative speed would be 1.85c