Answer:
Explanation:
Force on electron in an electric field E = eE where E is electric field .
acceleration = eE / m where m is mass of electron .
Putting the values
4 x 10⁶ = 1.6 x 10⁻¹⁹ x E / 9.1 x 10⁻³¹
E = 22.75 x 10⁻⁶ N/C
The direction of electric field will be towards west ( opposite to east )
because of negative charge on electron .
The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.
Answer: Option B: 1.3×10⁵ W
Explanation:


Work Done, 
Where s is displacement in the direction of force and F is force.

where, v is the velocity.
It is given that, F = 5.75 × 10³N
v = 22 m/s
P = 5.75 × 10³N×22 m/s = 126.5 × 10³ W ≈1.3×10⁵W
Thus, the correct option is B
Answer:
The potential energy increases and the kinetic energy decreases
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation: