The question is incomplete. The complete question is :
A plate of uniform areal density
is bounded by the four curves:




where x and y are in meters. Point
has coordinates
and
. What is the moment of inertia
of the plate about the point
?
Solution :
Given :




and
,
,
.
So,

, 



![$I=2 \int_1^2 \left( \left[ (x-1)^2y+\frac{(y+2)^3}{3}\right]_{-x^2+4x-5}^{x^2+4x+6}\right) \ dx$](https://tex.z-dn.net/?f=%24I%3D2%20%5Cint_1%5E2%20%5Cleft%28%20%5Cleft%5B%20%28x-1%29%5E2y%2B%5Cfrac%7B%28y%2B2%29%5E3%7D%7B3%7D%5Cright%5D_%7B-x%5E2%2B4x-5%7D%5E%7Bx%5E2%2B4x%2B6%7D%5Cright%29%20%5C%20dx%24)



So the moment of inertia is
.
Answer:
Yes
Explanation:
You are using energy to click the mouse, and the energy moves from your fingers to the mouse clicker.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
F = 2985.125 N
Explanation:
Given that,
The radius of curvature of the roller coaster, r = 8 m
Speed of Micheal, v = 17 m/s
Mass of body, m = 65 kg We need to find the net force acting on Micheal. Net force act the bottom of the circle is given by :

So, the net force is 2985.125 N.