Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.
Electrical energy is your answer.
Answer:
Re = 1 10⁴
Explanation:
Reynolds number is
Re = ρ v D /μ
The units of each term are
ρ = [kg / m³]
v = [m / s]
D = [m]
μ = [Pa s]
The pressure
Pa = [N / m²] = [Kg m / s²] 1 / [m²] = [kg / m s²]
μ = [Pa s] = [kg / m s²] [s] = [kg / m s]
We substitute the units in the equation
Re = [kg / m³] [m / s] [m] / [kg / m s]
Re = [kg / m s] / [m s / kg]
RE = [ ]
Reynolds number is a scalar
Let's evaluate for the given point
Where the data for methane are:
viscosity μ = 11.2 10⁻⁶ Pa s
the density ρ = 0.656 kg / m³
D = 2 in (2.54 10⁻² m / 1 in) = 5.08 10⁻² m
Re = 0.656 4 2 5.08 10⁻² /11.2 10⁻⁶
Re = 1.19 10⁴
The answer would be B.
(V=IR, 12-10i, 12/10=1.2)
Answer:
115 kPa
Explanation:
Use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Assuming no elevation change, h₁ = h₂.
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Plugging in values:
(582,000 Pa) + ½ (1000 kg/m³) (1.28 m/s)² = P + ½ (1000 kg/m³) (30.6 m/s)²
P = 115,000 Pa
P = 115 kPa