1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
6

In this diagram,the distance known as the amplitude is shown by choice

Physics
2 answers:
max2010maxim [7]3 years ago
5 0

Answer:

B

Explanation:

the amplitude is the distance from the resting point to the crest/trough.

Alenkasestr [34]3 years ago
5 0

Answer:

For those who are still confused the answer is B

Explanation:

If you say D it the wavelength but the question ask for distance so it asking whats the distance of the line in the middle to the top of the wave.

You might be interested in
Automobile A and B are initially 30 m apart travelling in adjacent highway lanes at speeds VA = 14.4 km/hr., VB 23.4 km/hr. at t
marshall27 [118]

Answer:

        x = 240 m

Explanation:

This is a kinematics exercise

Let's fix our frame of reference on car A

           x = x₀ₐ+ v₀ₐ t + ½ aₐ t²

         

the initial position of car a is zero

           x = 0 + v₀ₐ t + ½ 0.8 t²

for car B

          x = x_{ob} + v_{ob} t - ½ a_b t²

     

car B's starting position is 30 m

         x = 30 + v_{ob} t - ½ 0.4 t²

at the point where they meet, the position of the two vehicles is the same

         0 + v₀ₐ t + ½ 0.8 t² = 30 + v_{ob} t - ½ 0.4 t²

let's reduce the speeds to the SI system

        v₀ₐ = 14.4 km / h (1000 m / 1 km) (1h / 3600s) = 4 m / s

        v_{ob} = 23.4 km / h = 6.5 m / s

        4 t + 0.4 t² = 30 + 6.5 t - 0.2 t²

        0.2 t² - 2.5 t - 30 = 0

        t² - 12.5 t - 150 = 0

we solve the quadratic equation

       t = \frac{12.5 \pm \sqrt{12.5^2 + 4 \ 150}  }{2}

       t = \frac{12.5 \  \pm 27.5}{2}

       t₁ = 20 s

       t₂ = -7.5 s

time must be a positive quantity so the correct result is t = 20 s

let's look for the distance

        x = 4 t + ½ 0.8 t²

        x = 4 20 + ½ 0.8 20²

        x = 240 m

8 0
2 years ago
A 1000 kg car moving at 108 km/h jams on its brakes and comes to a stop. How much work was done by friction?
Nostrana [21]

Answer:

The work done by friction was -4.5\times10^{5}\ J

Explanation:

Given that,

Mass of car = 1000 kg

Initial speed of car =108 km/h =30 m/s

When the car is stop by brakes.

Then, final speed of car will be zero.

We need to calculate the work done by friction

Using formula of work done

W=\Delta KE

W=K.E_{f}-K.E_{i}

W=\dfrac{1}{2}mv_{f}^2-\dfrac{1}{2}mv_{f}^2

Put the value of m and v

W=0-\dfrac{1}{2}\times1000\times(30)^2

W=-450000
\ J

W=-4.5\times10^{5}\ J

Hence, The work done by friction was -4.5\times10^{5}\ J

3 0
3 years ago
Which of the following is not an example of work?
Ivahew [28]

Answer:

3 a is the ans i think so ....

7 0
2 years ago
What is the potential energy of a 5kg rock that is 7m high on a hill
Goryan [66]

Explanation:

Gravitational potential energy = mgh = (5)(9.81)(7) = 343.35J.

4 0
3 years ago
Find the moment of inertia about each of the following axes for a rod that is 0.360 {cm} in diameter and 1.70 {m} long, with a m
mamaluj [8]

The complete question is;

Find the moment of inertia about each of the following axes for a rod that is 0.36 cm in diameter and 1.70m long, with a mass of 5.00 × 10 ^(−2) kg.

A) About an axis perpendicular to the rod and passing through its center in kg.m²

B) About an axis perpendicular to the rod and passing through one end in kg.m²

C) About an axis along the length of the rod in kg.m²

Answer:

A) I = 0.012 kg.m²

B) I = 0.048 kg.m²

C) I = 8.1 × 10^(-8) kg.m²

Explanation:

We are given;

Diameter = 0.36 cm = 0.36 × 10^(−2) m

Length; L = 1.7m

Mass;m = 5 × 10^(−2) kg

A) For an axis perpendicular to the rod and passing through its center, the formula for the moment of inertia is;

I = mL²/12

I = (5 × 10^(−2) × 1.7²)/12

I = 0.012 kg.m²

B) For an axis perpendicular to the rod and passing through one end, the formula for the moment of inertia is;

I = mL²/3

So,

I = (5 × 10^(−2) × 1.7²)/3

I = 0.048 kg.m²

C) For an axis along the length of the rod, the formula for the moment of inertia is; I = mr²/2

We have diameter = 0.36 × 10^(−2) m, thus radius;r = (0.36 × 10^(−2))/2 = 0.18 × 10^(−2) m

I = (5 × 10^(−2) × (0.18 × 10^(−2))^2)/2

I = 8.1 × 10^(-8) kg.m²

3 0
3 years ago
Other questions:
  • The amount of heat needed
    5·1 answer
  • How is the basic structure of diamond related to its bulk properties?
    15·1 answer
  • Common transparent tape becomes charged when pulled from a dispenser. If one piece is placed above another, the repulsice force
    12·1 answer
  • Describe the core-mantle-crust structures of the terrestrial worlds. What is differentiation? What do we mean by the lithosphere
    15·1 answer
  • If we double the diameter of a telescope's mirror, what happens to its light-gathering ability? View Available Hint(s) If we dou
    14·1 answer
  • What is the formula for average velocity?
    12·1 answer
  • A block of mass 4 kg slides down an inclined plane inclined at an angle of 30o with the horizontal. Find the acceleration of the
    8·1 answer
  • I need help please will mark brainliest
    7·1 answer
  • A 1.1-kg object is suspended from a vertical spring whose spring constant is 120 N/m. (a) Find the amount by which the spring is
    9·1 answer
  • What is the magnitude of the electric field at the dot in the figure?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!