1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
5

61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A

and a voltage of 110 V, a lamp that contains a 100-W bulb, an overhead light with a 60-W bulb, and various other small devices adding up to 3.00 W. (a) Assuming the power plant that supplies 110 V electricity to the dorm is 10 km away and the two aluminum transmission cables use 0-gauge wire with a diameter of 8.252 mm, estimate the percentage of the total power supplied by the power company that is lost in the transmission. (b) What would be the result is the power company delivered the electric power at 110 kV?
Physics
1 answer:
Mademuasel [1]3 years ago
6 0

Answer:

Part a)

percentage = 21.3%

Part b)

percentage = 2.13 \times 10^{-5}%

Explanation:

As we know that total power used in the room is given as

P = P_1 + P_2 + P_3 + P_4

here we have

P_1 = (110)(3) = 330 W

P_2 = 100 W

P_3 = 60 W

P_4 = 3 W

P = 330 + 100 + 60 + 3

P = 493 W

Part a)

Since power supply is at 110 Volt so the current obtained from this supply is given as

110\times i = 493

i = 4.48 A

now resistance of transmission line

R = \frac{\rho L}{A}

R = \frac{(2.8 \times 10^{-8})(10\times 10^3)}{\pi(4.126\times 10^{-3})^2}

R = 5.23 \ohm

now power loss in line is given as

P = i^2 R

P = (4.48)^2(5.23)

P = 105 W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{105}{493} \times 100

percentage = 21.3%

Part b)

now same power must have been supplied from the supply station at 110 kV, so we have

110 \times 10^3 (i ) = 493

i = 4.48\times 10^{-3} A

now power loss in line is given as

P = i^2 R

P = (4.48 \times 10^{-3})^2(5.23)

P = 1.05 \times 10^{-4} W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{1.05 \times 10^{-4}}{493} \times 100

percentage = 2.13 \times 10^{-5}%

You might be interested in
Atoms of the same element that differ only in the number of neutrons are known as.
True [87]

Answer:

They are known as isotopes

7 0
2 years ago
"Giant Swing", the seat is connected to two cables as shown in the figure (Figure 1) , one of which is horizontal. The seat swin
Bingel [31]
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N. 

<span>Fx = [(233 + 840)/g]*v²/7.5 </span>

<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>

<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>

<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>

<span>233 + 840 = Ti*cos40º </span>

<span>solve for Ti. (This is the answer to the part b) </span>

<span>Horizontally </span>

<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>

<span>Solve for Th </span>

<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>

<span>using v and Ti computed above.</span>
3 0
3 years ago
What do organisms need in order to reproduce? This is Science Btw
Delicious77 [7]

Answer:

Energy. They need energy.

Explanation:

7 0
3 years ago
Read 2 more answers
A contestant in a winter games event pulls a 36.0 kg block of ice across a frozen lake with a rope over his shoulder as shown in
Novay_Z [31]

(a) The minimum force F he must exert to get the block moving is 38.9 N.

(b) The acceleration of the block is 0.79 m/s².

<h3>Minimum force to be applied </h3>

The minimum force F he must exert to get the block moving is calculated as follows;

Fcosθ = μ(s)Fₙ

Fcosθ = μ(s)mg

where;

  • μ(s) is coefficient of static friction
  • m is mass of the block
  • g is acceleration due to gravity

F = [0.1(36)(9.8)] / [(cos(25)]

F = 38.9 N

<h3>Acceleration of the block</h3>

F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32

a = F(net)/m

a = 28.32/36

a = 0.79 m/s²

Thus, the minimum force F he must exert to get the block moving is 38.9 N.

The acceleration of the block is 0.79 m/s².

Learn more about minimum force here: brainly.com/question/14353320

#SPJ1

4 0
2 years ago
True or False—An external force is defined as a force generated outside the system of interest that acts on an object inside the
inn [45]

Answer:

An external force is a force that acts on an object within the system from outside the system. This type of force is different than an internal force, which acts between two objects that are both within the system. The net external force combines these two definitions; it is the total combined external force

Explanation:

ig the answer is true

5 0
3 years ago
Other questions:
  • A car is travelling with a velocity of 10 m/s and has a mass of 550 kg. The<br> car has<br> energy.
    14·1 answer
  • Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th
    14·2 answers
  • Which has the largest range in air
    11·2 answers
  • Instruments that produce sound from a vibrating string (suspended between two nodes) are called:
    10·1 answer
  • How does flowing water change the earths surface
    13·1 answer
  • A nuclear accident (intentional or unintentional) can cause significant harm to those living nearby or at a distance. Harmful le
    15·1 answer
  • Calculate the force needed to bring a 950-kg car to rest from a speed of 90.0 km/h in a distance of 120 m (a fairly typical dist
    5·1 answer
  • Momentum is mass times velocity, so another way to think of momentum is ____ in motion.
    9·1 answer
  • Describe the parts of a lever. Include the following terms (fulcrum, resistance arm and effort arm).
    5·1 answer
  • A race car traveling at 44m/s slows at a constant rate to a velocity of 22m/s over 11 seconds , how far does it move during this
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!