1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
5

61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A

and a voltage of 110 V, a lamp that contains a 100-W bulb, an overhead light with a 60-W bulb, and various other small devices adding up to 3.00 W. (a) Assuming the power plant that supplies 110 V electricity to the dorm is 10 km away and the two aluminum transmission cables use 0-gauge wire with a diameter of 8.252 mm, estimate the percentage of the total power supplied by the power company that is lost in the transmission. (b) What would be the result is the power company delivered the electric power at 110 kV?
Physics
1 answer:
Mademuasel [1]3 years ago
6 0

Answer:

Part a)

percentage = 21.3%

Part b)

percentage = 2.13 \times 10^{-5}%

Explanation:

As we know that total power used in the room is given as

P = P_1 + P_2 + P_3 + P_4

here we have

P_1 = (110)(3) = 330 W

P_2 = 100 W

P_3 = 60 W

P_4 = 3 W

P = 330 + 100 + 60 + 3

P = 493 W

Part a)

Since power supply is at 110 Volt so the current obtained from this supply is given as

110\times i = 493

i = 4.48 A

now resistance of transmission line

R = \frac{\rho L}{A}

R = \frac{(2.8 \times 10^{-8})(10\times 10^3)}{\pi(4.126\times 10^{-3})^2}

R = 5.23 \ohm

now power loss in line is given as

P = i^2 R

P = (4.48)^2(5.23)

P = 105 W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{105}{493} \times 100

percentage = 21.3%

Part b)

now same power must have been supplied from the supply station at 110 kV, so we have

110 \times 10^3 (i ) = 493

i = 4.48\times 10^{-3} A

now power loss in line is given as

P = i^2 R

P = (4.48 \times 10^{-3})^2(5.23)

P = 1.05 \times 10^{-4} W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{1.05 \times 10^{-4}}{493} \times 100

percentage = 2.13 \times 10^{-5}%

You might be interested in
A ball rolls down a ramp for 15 seconds. If the initial velocity of the ball was 0.8m/s and the final velocity was 7m/s, what wa
iren [92.7K]
Acceleration = (change in speed) / (time for the change)

Change in speed = (ending speed) - (starting speed)

                            =  (7.0 m/s)  -  (0.8 m/s)  =  6.2 m/s

Time for the change  =  15 seconds

Acceleration  =  (6.2 m/s) / (15 sec)

                      =   (6.2/15)  m/s²

                      =     0.413 m/s²  
6 0
3 years ago
an electric current 0.75 a passes through a circuit that has a resistance of 175. according to ohm's law, what is the voltage of
Aleksandr [31]

Answer:

131.25

Explanation:

i worked it out on a diffrent sheet so its hard to explain

8 0
3 years ago
An airliner arrives at the terminal, and its engines are shut off. The rotor of one of the engines has an initial clockwise angu
Ilia_Sergeevich [38]

(a) 1200 rad/s

The angular acceleration of the rotor is given by:

\alpha = \frac{\omega_f - \omega_i}{t}

where we have

\alpha = -80.0 rad/s^2 is the angular acceleration (negative since the rotor is slowing down)

\omega_f is the final angular speed

\omega_i = 2000 rad/s is the initial angular speed

t = 10.0 s is the time interval

Solving for \omega_f, we find the final angular speed after 10.0 s:

\omega_f = \omega_i + \alpha t = 2000 rad/s + (-80.0 rad/s^2)(10.0 s)=1200 rad/s

(b) 25 s

We can calculate the time needed for the rotor to come to rest, by using again the same formula:

\alpha = \frac{\omega_f - \omega_i}{t}

If we re-arrange it for t, we get:

t = \frac{\omega_f - \omega_i}{\alpha}

where here we have

\omega_i = 2000 rad/s is the initial angular speed

\omega_f=0 is the final angular speed

\alpha = -80.0 rad/s^2 is the angular acceleration

Solving the equation,

t=\frac{0-2000 rad/s}{-80.0 rad/s^2}=25 s

6 0
3 years ago
Toy car in a science experiment covers 1.6 meters in half a second. If a the car travels at a steady speed, how far will it go i
Tanzania [10]
The answer is D. 32 m.

The simple equation that connects speed (v), time (t), and distance (d) can be expressed as:
v= \frac{d}{t}         ⇒ d=v*t

It is given:
v =  \frac{1.6m}{0.5s} = \frac{1.6m*2}{0.5s*2}= \frac{3.2m}{1s}  = 3.2 m/s
t = 10 s
d = ?

So:
d= v*t=3.2m/s*10s = 32m
3 0
3 years ago
PLEASE PLEASE PLEASE A mad scientist places massive amounts of charge on basketball sized aluminum balls. The charge on the ball
bazaltina [42]

Answer:

4.2 x 10⁷N

Explanation:

Given parameters:

Charge on ball:

             q₁  = 3C

              q₂ = 14C

Distance between balls  = 9000m

Unknown:

Force acting on the two balls

Solution:

The force experienced by the two charges is given by coulombs law. It is mathematically expressed as;

                      F  = \frac{k q_{1} q_{2} }{r^{2} }

where k  = 9 x 10⁹Nm²/C²

           q is the charges

             r is the distance

Input the variables and solve;

                 

        F  = \frac{9 x 10^{9} x 3 x 14 }{9000}  = 4.2 x 10⁷N

8 0
3 years ago
Other questions:
  • Two identical cars collide head on. Each car is traveling at 100 km/h. The impact force on each car is the same as hitting a sol
    13·1 answer
  • How many shells does the element neon have?<br> A. 1<br> B. 2<br> C. 8<br> D. 18
    12·1 answer
  • How to know if an element is a good conductor?
    10·1 answer
  • What people group was not targeted for estermination by the germans?​
    12·1 answer
  • 1. The maximum running speed (S) in km/hr and the corresponding body mass (m) in kg were
    6·1 answer
  • The law of conservation of energy states
    10·1 answer
  • PLEASE SOMEONE HELP ME PLEASE
    14·1 answer
  • All energy,potential kinetic within a specific system
    8·1 answer
  • What type of renewable energy uses Photovoltaics cells to capture the sun's energy
    5·2 answers
  • HELP ME PLZ I NEED TO PASS
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!