The cost of running the lightbulb A for 30 days at 0.110 per KWh is 1.98
<h3>How to determine the energy </h3>
We'll beging by calculating the energy used by lightbulb A. This can be obtained as follow:
- Power (P) = 25 watts = 25 / 1000 = 0.025 KW
- Time (t) = 30 days = 30 × 24 = 720 h
- Energy (E) =?
E = Pt
E = 0.025 × 720
E = 18 KWh
<h3>How to determine the cost for running the bulb for 30 days</h3>
The cost of running the bulb for 30 days can be obtained as follow:
- Cost per KWh = 0.11
- Energy (E) = 18 KWh
- Cost =?
Cost = energy × Cost per KWh
Cost = 18 × 0.11
Cost = 1.98
Lean more about buying electrical energy:
brainly.com/question/16963941
#SPJ4
Answer:
The charge on the ball bearing 4.507 × 10^-8 C
Explanation:
From Coulomb's law
F = kq1q2/r²
make q2 the subject
q2 = Fr²/kq1
q2 = (1.8×10^-2 × 0.026²) ÷ (9×10^9 × 30×10^-9)
q2 = 4.507 × 10^-8 C
I think the answers are box #1 and #3. It is number one for a fact. However, it depends where the start is at #3.
Answer:
f = 1.18 x 10¹¹ Hz
Explanation:
The equation used to find frequency is:
f = c / w
In this form, "f" represents the frequency (Hz), "c" represents the speed of light (3.0 x 10⁸ m/s), and "w" represents the wavelength (m).
Since you have been given the value of the constant (c) and wavelength, you can substitute these values into the equation to find frequency.
f = c / w <---- Formula
f = (3.0 x 10⁸ m/s) / w <---- Plug 3.0 x 10⁸ in "c"
f = (3.0 x 10⁸ m/s) / (2.55 x 10⁻³ m) <---- Plug 2.55 x 10⁻³ in "w"
f = 1.18 x 10¹¹ Hz <---- Divide
Answer:
a toy car speed is about 2.5 to 3.5 mph