0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
The ionization equation is:
HF ⇄ H(+) + F(-)
The ionization constant is Ka = [H(+)] * [H(-)] / [HF]
=> [H(+)] * [F(-)] = Ka * [HF]
Given that Ka < 1
[H(+)] * [F(-)] < [HF]
Which is [HF] > [H(+)] * [F(-)] the option a. fo the list of choices.
The answer to is all the information on a line graph is as precise as the information in the data table would be FALSE