Answer: Positive effects: mass production of fertilizers, alkaline cleansers, refrigerant gas, dyes, explosives
Negative effects: heath problems, negative effects on soil organisms and soil organic matter, imbalances to the nitrogen cycle, high fossil fuel energy inputs, production of deadly weapons
Explanation:
The Haber process (also called Haber Bosch process) is used to produce ammonia from nitrogen and hydrogen under the high pressure. Basically, it's an artificial nitrogen fixation process. This method has both positive and negative effects on modern society.
Positive sides: ammonia is mainly used for mass production of fertilizer, which allows more food for everyone. It can be used for production of alkaline cleansers, refrigerant gas, dyes and explosives. Ammonia is also used in production of synthetic polymers, due to its role in the manufacturing of cyanide.
Negative sides: ammonia is a toxic gas, it can irritate eyes and lungs. Because of that, the excess nitrogen in soil and water coming from synthetic fertilizers can cause health problems. It is harmful for humans and animals, but it can also be harmful for plants. Environmental factors are also important. Because of the mass fixation, there is imbalance in the earth’s nitrogen cycle. Also, fossil fuels are used as a source of power for machinery in Haber's process, which increases emissions into the atmosphere. And, at least ammonia is a major component of weapons including great number of bombs.
Oxygen (6O2) and Glucose (C6H12O6)
<span>Reference: 6CO2 + 6H2O + light energy = C6H12O6 + 6O2.</span>
Answer: the percent composition of carbon in heptane is 83.9%
Explanation:
<u>1) Atomic masses of the atoms:</u>
<u>2) Molar mass of heptane:</u>
- C₇H₁₆: 7 × 12.01 g/mol + 16×1.008 g/mol = 100.2 g/mol
<u>3) Mass of carbon in one mole of heptane:</u>
- C₇: 7 × 12.01 g/mol = 84.07 g/mol
<u>3) Percent composition of carbon:</u>
- % = (mass in grams of C) / (mass in grams of C₇H₁₆) × 100 =
= (84.07 g/ 100.2 g) × 100 = 83.9% ← answer
Answer:

Explanation:
C = Allowable concentration = 1.1 mg/L
= Flow rate of river = 
= Discharge from plant = 
= Background concentration = 0.69 mg/L
= Maximum concentration that of the pollutant
The concentration of the mixture will be

The maximum concentration that of the pollutant (in mg/L) that can be safely discharged from the wastewater treatment plant is
.
Explanation:
2,3-diethyl hexane
At first we select a long chain.
Then, we number that chain from that side where substituent position is closer.
Then, we write it's IUPAC name
Position of substituent + substituent name + chain name + suffix
Here,
2,3 + -diethyl + hex + -ane
= 2,3-diethyl hexane