Answer:
0.084 M
Explanation:
Using the Henderson-Hasselbalch equation for a buffer ( a buffer is solution contain a weak acid and it conjugate base; the solution resist change in pH)
pH = pKa + log ( base/acid)
4.9 - 4.76 =log ( base / acid)
10^0.14 = ( base / acid)
1.38 = (base / acid)
since there is 0.2 M in the buffer solution
the concentration of acid =
× 0.2 = 0.084 M
A strong acid- strong base titration is performed using a phenolphthalein indicator. Phenolphtalein is chosen because it changes color in a pH range between 8.3 – 10. It will appear pink in basic solutions and clear in acidic solutions. ... It is known as the titrant.
When naming an ionic compound, write the name of the cation, which is the metal first. Then, write the name of the anion, which is the nonmetal. However, you remove the last 2-3 letters and replace suffixes.
1. RbF --> Rubidium Fluoride
Change fluorine to fluoride
2. CuO --> Copper (II) Oxide
Change oxygen to oxide. Oxide has a charge of -2. Since no subscripts are written, it means they have the same opposite charge. So, we use Copper (II).
<span>3. (NH</span>₄<span>)</span>₂<span>C</span>₂<span>O</span>₄ ---> Ammonium Oxalate
NH₄ is ammonia, but we change it to ammonium for polyatomic ions.