The isotope notation : 
<h3>
Further explanation
</h3>
Given
53 protons and 20 neutron
Required
The isotope notation
Solution
Isotopes are elements that have the same atomic number with a different mass number
The following element notation,

X = symbol of element
A = mass number
= number of protons + number of neutrons
Z = atomic number
= number of protons = number of electrons, on neutral elements
So the mass number of element = 5 + 6 11
Atomic number = 5
The symbol :

MM Zn(NO₃)₂ = 189.36 g/mol
mass 1 mol Zn(NO₃)₂ = 189.36 g
mass hydrate = 100 / 63.67 x 189.36 = 297.409 g
mass 1 mol hydrate = 297.409 g
MM hydrate = 297.409 g/mol
MM hydrate = MM Zn(NO₃)₂ + MM xH₂O
297.409 = 189.36 + x(18)
x = 6
Answer:
Mario uses a hot plate to heat a beaker of 50mL of water. He used a thermometer to measure the
temperature of the water. The water in the beaker began to boil when it reached the temperature of
100'C. If Mario completes the same experiment with 25mL of water, what would happen to the boiling
point?
a) The water will not reach a boil.
b) The boiling point of water will increase.
c) The boiling point of water will decrease.
d) The boiling point of water will stay the same.
Explanation:
Answer:
I. The balloon has a volume of 22.4L
III. The balloon contains 6.022x10^23 molecules.
Explanation:
At stp, it has been proven that 1mole of a gas occupy 22.4L.
Therefore, option (i) is correct.
The molar mass N2 = 14.01 x 2 = 28.02g/mol
Number of mole of N2 = 1 mole
Mass of N2 =..?
Mass = mole x molar Mass
Mass of N2 = 1 x 28.02 = 28.02g.
The mass content of the balloon is 28.02g, therefore, option (ii) is wrong.
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02x10^23 molecules. This implies that 1 mole of N2 also contains 6.02x10^23 molecules
Therefore, option (iii) is correct.
The correct options to the question are:
Option i and option iii
Should be 1.8L.
2 moles of hydrogen react with 1 mole of oxygen. If 2 moles of hydrogen is 3.6L, 1 mole of oxygen should be 1.8L.