From the calculations, the power expended is 43650 W.
<h3>What is the power expended?</h3>
Now we can find the acceleration from;
v = u + at
u = 0 m/s
v = 95 km/h or 26.4 m/s
t = 6.8 s
a = ?
Now
v = at
a = v/t
a = 26.4 m/s/ 6.8 s
a = 3.88 m/s^2
Force = ma = 850-kg * 3.88 m/s^2 = 3298 N
The distance covered is obtained from;
v^2 = u^2 + 2as
v^2 = 2as
s = v^2/2a
s = (26.4)^2/2 * 3.88
s = 696.96/7.76
s = 90 m
Now;
Work = Fs
Work = 3298 N * 90 m = 296820 J
Power = 296820 J/ 6.8 s
= 43650 W
Learn more about power expended:brainly.com/question/11579192
#SPJ1
Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:

Answer:
Height h= 1.7 m
Explanation:
Supposing we have to find height in meter.
1 feet = 0.3048 m
1 inch = 0.0254 m
Given that:
5 feet
= 5×0.3048
= 1.524 m
and 7 inch = 7×0.0254= 0.1778 m
Therefore total height of a man in meter
5 feet 7 inch = 1.5424+0.1778 =1.7 m
Height h= 1.7 m
According to KE = (3/2)kT
reducing temperature, in KELVIN, by half, average KE is reduced by half.
V=d/t
V=?
d=400m(4)
=1600m
t=6 min.
=360 s
V=1600m/360s
V=4.4m/s