1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
5

While John is traveling along a straight interstate highway , he notices that the mile marker reads 248 km. John travels until h

e reaches the 149 km marker and then retraces his path to the 167 km marker . What is John's resultant displacement from the 248 km marker

Physics
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer:

I'm just going to tell you the information you need but not the answer so you can learn from the problem.

Explanation:

So he was at 248 km mark and traveled 99 km to get to the 149km mark. Then he turns around to go back 18 km to the 167 km mark. That is all the information you need to complete the question I recommend drawing it out in your notes.

You might be interested in
What is the average speed if an object travels 200 km in 5 hours
melamori03 [73]

Answer:

40km per hour

Explanation:

8 0
2 years ago
what happens if a voltmeter is connected in series with other components of the circuit (i.e , ammeter, cell, battery, resistor
Talja [164]

Answer:the voltmeter measures the potential difference of the circuit,. Voltmeter is a device used to measure potential difference.

Explanation:

8 0
3 years ago
Consider a uniformly charged sphere of radius Rand total charge Q. The electric field Eout outsidethe sphere (r≥R) is simply tha
AlexFokin [52]

1) Electric potential inside the sphere: \frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2) Ratio Vcenter/Vsurface: 3/2

3) Find graph in attachment

Explanation:

1)

The electric field inside the sphere is given by

E=\frac{1}{4\pi \epsilon_0}\frac{Qr}{R^3}

where

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

Q is the charge on the sphere

R is the radius of the sphere

r is the distance from the centre at which we compute the field

For a radial field,

E(r)=-\frac{dV(r)}{dr}

Therefore, we can find the potential at distance r by integrating the expression for the electric field. Calculating the difference between the potential at r and the potential at R,

V(R)-V(r)=-\int\limits^R_r  E(r)dr=-\frac{Q}{4\pi \epsilon_0 R^3}\int r dr = \frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)

The potential at the surface, V(R), is that of a point charge, so

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore we can find the potential inside the sphere, V(r):

V(r)=V(R)+\Delta V=\frac{Q}{4\pi \epsilon_0 R}+\frac{-Q}{8\pi \epsilon_0 R^3}(R^2-r^2)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})

2)

At the center,

r = 0

Therefore the potential at the center of the sphere is:

V(r)=\frac{Q}{8\pi \epsilon_0 R}(3-\frac{r^2}{R^2})\\V(0)=\frac{3Q}{8\pi \epsilon_0 R}

On the other hand, the potential at the surface is

V(R)=\frac{Q}{4\pi \epsilon_0 R}

Therefore, the ratio V(center)/V(surface) is:

\frac{V(0)}{V(R)}=\frac{\frac{3Q}{8\pi \epsilon_0 R}}{\frac{Q}{4\pi \epsilon_0 R}}=\frac{3}{2}

3)

The graph of V versus r can be found in attachment.

We observe the following:

- At r = 0, the value of the potential is \frac{3}{2}V(R), as found in part b) (where V(R)=\frac{Q}{4\pi \epsilon_0 R})

- Between r and R, the potential decreases as -\frac{r^2}{R^2}

- Then at r = R, the potential is V(R)

- Between r = R and r = 3R, the potential decreases as \frac{1}{R}, therefore when the distance is tripled (r=3R), the potential as decreased to 1/3 (\frac{1}{3}V(R))

Learn more about electric fields and potential:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
3 years ago
a _______ wave is a mechanical wave in which particles of the medium vibrate in a direction that is parallel to the direction in
Helga [31]
The answer is Longitudinal
6 0
2 years ago
Read 2 more answers
How much work is done? A Net Force of 9.0 N acts through a distance of 3.0 m in a time of 3.0 s. The answers are 3.0 J, 9.0 J, 2
Vadim26 [7]
If the force and the motion are along the same direction (like it is here) then work is force*distance.  The time doesn't come into play until you want the power used.  So here
W=9.0*3.0=27J
5 0
3 years ago
Other questions:
  • HELP ASAP PLEASE NEED HELP
    7·2 answers
  • A horse gallops along a racecourse at a speed of 40km/h. It takes the horse 3 minutes to run the length of the track. Convert 3
    7·1 answer
  • 6. A billiard ball traveling at 4.0 m/s has an elastic head-on collision with a billiard ball of equal mass
    9·1 answer
  • What is vector quantities?
    12·1 answer
  • A 730 N student stands in the middle of a frozen pond having a radius of 5.8 m. He is unable to get to the other side because of
    8·1 answer
  • What type of power plant burns material to make electricity?
    11·1 answer
  • A physicist measures the magnetic field at the center of a loop of wire with N number of turns (not a solenoid) and current I fl
    7·1 answer
  • Why would a skier try to lower his center of gravity?
    8·1 answer
  • If an object is travelling faster than its own sound waves, which of the following is created?
    14·2 answers
  • How many electrons should be in an atom’s valence shell (with the exception of hydrogen and helium) to become stable? 2 4 6 8.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!