Answer: 846°C
Explanation:
The quantity of Heat Energy (Q) required to heat bismuth depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = 423 joules
Mass of bismuth = 4.06g
C = 0.123 J/(g°C)
Φ = ?
Then, Q = MCΦ
423 J = 4.06g x 0.123 J/(g°C) x Φ
423 J = 0.5J/°C x Φ
Φ = (423J/ 0.5g°C)
Φ = 846°C
Thus, the change in temperature of the sample is 846°C
Answer:
The answer to your question will be d) greater the pressure
Explanation:
Speed = wavelength × frequency
speed = 10/1000 × 5.0
speed = 0.001 × 5.0
speed = 0.005m/s
Friction is directly related to air particles.
When we say that friction is high, it means that you're colliding with lots of air particles, and hence you can't speed up as easily.
Thus, the more air particles you encounter, the higher the friction.
The faster you go, the more particles you will encounter in a given time; hence at higher speeds, the friction is higher.
Answer:
β 2 = 0.02575 mm
Explanation:
given data
wavelength = 563 nm
separation distance between adjacent bright fringes = 0.0290 mm
wavelength = 500 nm
solution
we get here separation distance between adjacent bright fringes that is express as
β =
..................................1
here D is distance from plane of slit to screen
and d is slit sepation that is constant
so
β 2 =
β 2 = 0.02575 mm