Answer:
Inverted
Real
Explanation:
u = Object distance = 30 cm
v = Image distance
f = Focal length = 10 cm
Lens Equation
As, the image distance is positive the image is real and forms on the other side of the lens

As, the magnification is negative the image is inverted
Answer:
1.87 s
Explanation:
d = distance traveled by the water wave = 64 m
t = time taken to travel the distance = 14 s
= speed of water wave
Speed of water wave is given as


= 4.6 m/s
= wavelength of the wave = 859 cm = 8.59 m
T = period of the wave
period of the wave is given as


T = 1.87 s
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Answer: The answer is 333.3333 repeating
Explanation:
Divide the mass by the volume.