<h3><u>Answer;</u></h3>
Electron cloud
<h3><u>Explanation;</u></h3>
- <em><u>An atom is the smallest particle of an element that can take part in a chemical reaction. Atom is made up of two parts ; that is the nucleus and the electron cloud. The nucleus contain subatomic particles; protons and neutrons, while the electron cloud contains the electrons.</u></em>
- <em><u>The electron cloud is the largest part of the atom and is mostly an empty space. Most of an atom is a cloud of electrons surrounding a space called the nucleus with tiny protons and neutrons.</u></em>
The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.
pls thank me and brainliest me
The amount of solid does not affect how you are describing the solid so a is the answer
Answer:
Explanation:
a ) V = 3 cos(0.5t)
differentiating with respect to t
dv /dt = -3 x .5 sin0.5t
= -1.5 sin0.5t.
acceleration = - 1.5 sin 0.5t
when t = 3 s
acceleration = - 1.5 sin 1.5
= - 1.496 ms⁻²
v = 3 cos.5t
b ) dx/dt = 3 cos 0.5 t
dx = 3 cos 0.5 t dt
integrating on both sides
x = 3 sin .5t / .5
x = 6 sin0.5t
At t = 2 s
x = 6 sin 1
x = 5.05 m
Answer:
To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Explanation:
The emissive power of a light bulb can be given by the following formula:
E = σεAT⁴
where,
E = Power Input or Emissive Power
σ = Stefan-Boltzmann constant
ε = Emissivity
A = Area
T = Absolute Temperature
Therefore,
A = E/σεT⁴
So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.