From the answers provided, I believe the possible answer would be the last option, silicon, oxygen, and one or more metals. Here's my reasoning: the most abundant mineral group found in the Earth's crust is the silicate group. The silicate materials contain both oxygen and silicon. Silicates are the most common minerals in the rock-formation process, and it has, in fact, been estimated that they make up 75 to 90 percent of the Earth's crust. From this piece of evidence, I can guess that the answer will possibly be D, silicon, oxygen, and one or more metals.
It should also be noted that the additional elements that combine with the silicon-oxygen tetrahedron are involved with the other elements commonly found in the Earth's crust and mantle. They are aluminum, calcium, iron, magnesium, potassium and sodium.
There are many porperties. You can use Altitude, Temperature, Pressure and Density, but the best one is temperature. The resaon for that is that based on the temperature changes then the athmosphere can be broken into four major layers. Remember that the layers are the following: <span>the </span>troposphere,the<span> </span>stratosphere, <span>the </span>mesosphere<span>, and the</span>thermosphere<span>.</span>
Answer:
Explanation:
Energy is what makes change happen and can be transferred form one object to another. ... Power is the rate at which energy is transferred. It is not energy but is often confused with energy. The watt is the most commonly used unit of measure for power.
The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
Answer:
= 7.07 m
Explanation:
The Tarzan reaches bottom of swing after descending 2.5 m,
change in his potential energy equals his kinetic energy at bottom of swing
m g h = (1/2) m v² ,
hence speed v of Tarzan at bottom of swing is given as
v = ( 2 g h )1/2
= ( 2 × 9.8 × 2.5 )1/2
= 7 m/s
At the bottom of swing, if the vine breaks, then he is moving with horizontal velocity 7 m/s in gravitational field.
If vertical distance from ground to bottom of swing is 5 m, then time t for Tarzan to reach ground is given by
S = (1/2)g t2 or t = (2S/g)1/2
= ( 2 × 5 / 9.8 )1/2
= 1.01 s
Horizontal distance traveled by Tarzan = 1.01 × 7
= 7.07 m