It is called "distance". In fact, distance measures how far apart two points are from each other, and it is always a positive number.
In mathematics, for instance, the distance between two points of coordinates (x1,y1) and (x2,y2) on a xy-plane is defined as

and by definition, this number is always positive.
It would be "Double replacement".
Hope this helps!
An N-Type semiconductor will always have an excess electron which is more famous for the term valence electrons. It is one of the part which makes a p-n junction the structure of a diode a basic type of semiconductor device. A P-type semiconductor on the other hand has missing electrons or most widely known as valence holes. When applied a voltage bias of correct polarity and intensity between both ends of the junction you are able to close the gap between the junction allowing the excess valence electron to pass through the p type material inducing current with process, in application lighting up the diode.
Answer:
Right shoe
Explanation:
Let the mass and velocity of incoming puck be m and v respectively.
Momentum of the colliding puck will be mv
In case of first case , the momentum of puck becomes zero so change in momentum after collision with left shoe
= mv - 0 = mv
If time duration of collision be t
rate of change of momentum
= mv / t
This is the force exerted by puck on the left shoe .
Now let us consider collision with right shoe
momentum after collision with right shoe
- mv
change in momentum
= mv - ( - mv ) = 2mv
If time duration of collision be t
rate of change of momentum
= 2mv / t
This is the force exerted by puck on the right shoe .
Since the force on the right shoe is more , this shoe will have greater speed
after collision.
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?