Answer:
C
Explanation:
The sun has rotated causing the shadow to reflect.
We can solve for the resultant x and y components by using
the sine and cosine functions.
resultant x = 2.5 cos 35 + 5.2 cos 22 = 6.87 km
resultant y = 2.5 sin 35 + 5.2 sin 22 = 3.38 km
The resultant displacement is calculated using hypotenuse
equation:
displacement = sqrt (6.87^2 + 3.38^2)
displacement = 7.66 km
The resultant angle is:
θ = tan^-1 (3.38 / 6.87)
θ = 26.20°
Therefore the magnitude and direction is:
7.66 km, 26.20° to the ground
Answer:
The work done by gravity is 784 J.
Explanation:
Given:
Mass of the block is, 
Height to which it is raised is, 
Acceleration due to gravity is, 
Now, work done by gravity is equal to the product of force of gravity and the distance moved in the direction of gravity. So,

Force of gravity is given as the product of mass and acceleration due to gravity.
. Now,

Therefore, the work done by gravity is 784 J.
<span>Radius = 4.6 m
Time for one complete rotation t = 5.5 s.
Distance = 2 x 3.14 x R = 2 x 3.14 x 4.6 m = 28.888.
Velocity V = distance / time = 28.888 / 5.5 s = 5.25 m/s
Force exerted by cat Fc = mV^2 / R = (mx 5.25^2) / 4.6 m
Force of the cat Fc = 6m, m being the mass.
Normal force = Us x m x g = Us x m x 9.81 = Us9.81m
equating the both forces => Us9.81m = 6m => Us = 6 / 9.81 => Us = 0.6116
So coefficient of static friction = 0.6116</span>
Explanation:
Mass of the ball, m = 0.058 kg
Initial speed of the ball, u = 11 m/s
Final speed of the ball, v = -11 m/s (negative as it rebounds)
Time, t = 2.1 s
(a) Let F is the average force exerted on the wall. It is given by :


F = 0.607 N
(b) Area of wall, 
Let P is the average pressure on that area. It is given by :


P = 0.202 Pa
Hence, this is the required solution.