1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
3 years ago
5

What tool do you use to measure the acidity of lemon juice?

Physics
1 answer:
maxonik [38]3 years ago
5 0

You would use ph paper. because it tells you how acidic something is. you can even put a piece in your mouth and check how acidic your mouth is. there is a key that shows you various colors and you would match the color of your strip to the color of the key. and choose the number next to the color on the key. hope this helps.
You might be interested in
Assuming that Bernoulli's equation applies, compute the volume of water ΔV that flows across the exit of the pipe in 1.00 s . In
OLEGan [10]

Answer:

discharge rate (Q) = 0.2005 m^{3} / s

Explanation:

if you read the question you would see that some requirements are missing, by using search engines, you can get the complete question as stated below:

Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0m , and the elevation of points 2 and 3 is 2.00 m . The cross-sectional area at point 2 is 4.80x10-2m ; at point 3, where the water is discharged, it is 1.60x10-2m. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe. Part A Assuming that Bernoulli's equation applies, compute the volume of water DeltaV that flows across the exit of the pipe in 1.00 s . In other words, find the discharge rate \Delta V/Delta t. Express your answer numerically in cubic meters per second.

solution:

time = 1 s

elevation of point 1 (z1) = 10 m

elevation of point 2 (z2) = 2 m

elevation of point 3 (z3) = 2 m

cross section area of point 2 = 4.8 x 10^{2} m

cross section area of point 3 = 1.6 x 10^{2} m

g

acceleration due to gravity (g) = 9.8 m/s^{2}

find the discharge rate at point 3 which is the exit pipe.

discharge rate (Q) = A3 x V3

where A3 is the cross sectional area at point 3 and V3 is the velocity of the fluid and can be gotten by applying Bernoulli's equation below

\frac{P1}{ρg} +  \frac{V1^{2} }{2g} + Z1 =  \frac{P3}{ρg} + \frac{V3^{2} }{2g} + Z3

pressure at point 1 (P1) is the same as pressure at point 3 (P3), and at point 1, the velocity (V1) = 0. therefore the equation now becomes

\frac{P1}{ρg} + Z1 =  \frac{P1}{ρg} + \frac{V3^{2} }{2g} + Z3

Z1 = \frac{V3^{2} }{2g} + Z3

V3 = \sqrt{2g(Z1-Z3)}

V3 = \sqrt{2 x 9.8 x (10 - 3)}

V3 = 12.53 m/s

discharge rate (Q) = A3 x V3 = 1.6 x 10^{-2} x 12.53

discharge rate (Q) = 0.2005 m^{3} / s

8 0
3 years ago
Which is belief held by sociologists who work from a social-conflict perspective
Ksju [112]
Some social patterns are helpful, while others are harmful.
7 0
3 years ago
Read 2 more answers
A flare is launched from a life raft with an initial velocity of 192 ft/sec. How many seconds will it take for the flare to retu
DIA [1.3K]

We use the formula,

h= ut- 16 t^2

Here, h is the  variable  represents the height of the flare  in feet when it returns to the sea so, h = 0 and u is the initial velocity of the flare, in feet per second and its value of 192 ft/sec.

Substituting these values in above equation, we get

0 = 192 t - 16 t^2  \\\\ 16 t( 12 - t ) =0 \\\\ t = 12 s.

Here, t= 0 neglect because it is  the time when the flare is launched.

Thus, flare return to the sea in 12 s.

8 0
3 years ago
Freezing Point Depression: Can someone explain this formula to me? ΔTf = Kfcm
Leya [2.2K]
If the solution is treated as an ideal solution, the extent of freezing point depression depends only on the solute concentration that can be estimated by a simple linear relationship with the cryoscopic constant: ΔTF = KF · m · i ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF (solution). KF, the cryoscopic constant, which is dependent on the properties of the solvent, not the solute. Note: When conducting experiments, a higher KF value makes it easier to observe larger drops in the freezing point. For water, KF = 1.853 K·kg/mol.[1] m is the molality (mol solute per kg of solvent) i is the van 't Hoff factor (number of solute particles per mol, e.g. i = 2 for NaCl).
8 0
3 years ago
What causes an object to rotate
frez [133]
A spinning force acting upon it
3 0
3 years ago
Other questions:
  • A. Describe the mass, charge, and location of protons, neutrons, and electrons in an atom.
    8·2 answers
  • Where is relative time recorded
    7·1 answer
  • Which statement describes a difference between electromagnetic and mechanical waves? A. Mechanical waves do not transfer energy,
    12·1 answer
  • Which are ways to improve the design of this experiment? Check all that apply.
    9·2 answers
  • 1. A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging on the
    8·1 answer
  • If an object accelerates at 10 m/s2 for 4 seconds, how much will its velocity change by?
    13·1 answer
  • Why did it take Kepler so long to discover the truth about the motions of the solar system?
    5·1 answer
  • What theory did Dalton propose to explain why the elements
    9·1 answer
  • Vector A has a magnitude of 25 units and points in the positive y-direction. When vector B is added to A, the resultant vector A
    14·1 answer
  • a student taps the side of a stainless steel can containing water, making some sound waves travel from the stainless steel to th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!